Praetorian Fibre Optic Sensing
Pipeline Monitoring, Leak Detection System

For more information, please visit www.hawkmeasure.com
A Complete Pipeline Performance Monitoring System.

- Any pipe, anywhere
- Distance up to 40km

Praetorian Fibre Optic Sensing
Praetorian Fibre Optic Sensing
Pipeline Monitoring, Leak Detection System

Principle of Operation

Praetorian emits a laser pulse down a fibre optic cable to measure vibration and temperature as well as the position of that vibration and temperature.

Using a combination of Rayleigh backscatter, Brillouin Backscatter and time of flight, Praetorian determines the presence, location, intensity and frequency of vibrations and temperature changes along an optical fibre in real time.

Rayleigh Backscatter responds to physical vibration imparted on the fibre by disturbances to the application. HAWK’s signal analysis software allows Praetorian to quickly determine the most likely origin of the vibration and report any erroneous signals to maintenance personnel of potential issues with the pipeline.

Brillouin backscatter responds to shifts in environmental temperatures and is used to detect the temperature drop associated with the reduction in fluid pressure caused by the leak taking advantage of the Joule-Thomson effect.

Function

HAWK’s Praetorian System continually monitors large spans of pipeline looking for vibration and temperature changes, once found the system confirms the alarm and reports them both visually and digitally so that existing site Distributed Control Systems (DCS) can be used to raise an alarm with a maintenance or operations team.

Praetorian can be thought of as acting as a series of microphones and thermometers along the fibre recording in real time. The System analyses enormous amount of data using ultra fast Field Programmable Gate Array (FPGA) architecture to give real time feedback on the likely origin and type of the disturbance. Utilizing proprietary pattern recognition software and multi variable sensing Praetorian reduces the incidences of false positives normally associated with other Fibre Optic Sensors.

Praetorian’s fast processing speed and pulse rate allow it to detect minute interferences that may otherwise go unnoticed. Some examples of detectable activities include:

- Pipeline leakage
- Ground disturbance
- Manual excavation
- Machine excavation
- Vehicle movement near pipeline
- Hot tapping and/or theft
- Seismic activity

Praetorian also Geo-tags alarms allowing security or surveillance teams are able to response immediately.

Primary Areas of Application

Installation locations:
- Oil (Crude of refined)
- Gas (any type)
- Chemical
- Mining tailings
- Water/waste water
- Brine
- Slurries
- Steam

Applications:
- Buried pipelines (any depth of cover)
- Unburied pipelines (on supports or laid on ground)
- Any fluid (gas, oil water or chemical)
- High or low pressure
- High or low temperature
- Hazardous applications
- Corrosive applications
- Steam lines
- Service gasses
Advantages

- Praetorian can function on applications where either the product is invisible (gas) or the pipeline cannot be visually inspected (buried).
- Fibre optic sensing detects not only the presence of the leak but its specific location.
- Praetorian is extremely sensitive, competing (Mass Balance) technologies require large leaks (>1% of flow rate) in order to respond. Praetorian is able to detect “pinhole” leaks.
- Due to the use of “long haul” single mode fibre Praetorian is able to detect leaks at long distances.
- Existing Fibre optic data infrastructure may be utilised.
- System is passive, no electricity is required in the field.
- No maintenance or calibration require after commissioning.
- Self diagnostics monitor the unit’s condition and maintain optimum performance.
- Not effected by electromagnetic fields (EMF), lightning or weather events.
- Easy, low cost installation with pipeline.
- Low cost per meter.

How it works

Multiple Parameters FOS

Praetorian is unique in the market as it monitors both temperature and vibration in a single package. The combined parameter sensing allows Praetorian to self confirm that a leak has in fact occurred prior to reporting it. Typically the vibrational response from a leak is immediate and the unit detects this first and begins monitoring that area for an associated temperature drops whilst flagging the area with a pre-alarm.

Once it is detected that a localised temperature drop has occurred at the same area of the vibrational signal the leak is confirmed and an alarm is raised. This is communicated to a Supervisory Control and Data Acquisition (SCADA) System or Distributed Control Systems (DCS).

In the event that the temperature drop does not occur Praetorian will go into a pattern recognition mode and conduct frequency and intensity analysis in an attempt to classify the vibration against an onboard library. If a vibration cannot be classified the system will record the signal and flag it as an alarm with an unknown origin prompting the operator to respond.

Distributed Acoustic Sensing - Sound
Distributed Temperature Sensing - Temperature

False positives are a major concern for single variable systems. Environmental noises or localised weather events can easily trigger an alarm when no leak is present. The advantage of dual sensing method is effectively a complete elimination. Praetorian requires that the presence of both a noise with a leak sound profile and a localised drop in temperature to alarm and both of these conditions occurring at the same place is not a phenomenon that occurs in nature and therefore something the applications environment can produce leading to a false positive.
Time of flight
Accurately identifying the exact location of a specific signal is accomplished by a method called time of flight. Simply put, the amount of time from sending the laser pulse to receiving a return signal is able to be recorded. Due to the internal properties of a fibre optic core, the speed of light through a fibre is consistent at approximately two thirds of the speed of light through a vacuum. As this is consistent, the return time can be used to calculate a distance on the fibre.

Vibration Detection
Detection of Vibration is Praetorians Primary sensing variable and relies on the amount of sound energy created by pressurized fluid escaping the pipeline at the leak location. This is a reliable method of detection as leaks once started are consistent and only get worse over time.

In Praetorian, an optical effect called Rayleigh Backscatter is used to observe vibrational effects on a fibre. A fibre optic core backscatter is the light that reflects off natural imperfections and polarizations within the fibre and returns back to the light source. The return light gets diffracted into different frequencies similar to light moving through a prism and Rayleigh backscatter is one of these diffracted frequencies. The amount of compression that vibration causes on the core determines the strength of the Rayleigh component of the backscatter. In this way, the intensity and frequency of the vibration is measurable by recording the behaviors or the Rayleigh backscatter component.

For a signal to be classified as a pre-alarm (not yet confirmed by temperature drop) the noise profile must match a series of conditions and these include: Consistency, time, intensity and frequency. All of these parameters need to be within thresholds determined during the commissioning and testing period. This reduces the amount of false signals making it to pre-alarm condition.

Temperature detection
Once a signal is flagged as a pre-alarm, Praetorian will hunt for a temperature drop at regular intervals. It does this by scanning a separate fibre within the cable and looking for changes to another component of the backscatter called Brillouin scattering. The system can be calibrated to run very quick (a few seconds) lower accuracy (±1°C) scans of the fibre for temperature changes or to take a slower (half a minute) more detailed scan for maximum accuracy (±0.25°C) of temperature to sense even the smallest changes.

Leakage from a compressed pipeline is identified by the development of a cold spot due to the pressure release known as the Joule-Thomson effect. A small pressure change results in significant temperature variations. This effect can be seen in the cooling of an aerosol can with extended use.

As the pipelines outer surface is rapidly cooled by this effect, a temperature gradient develops in the soil around the pipeline surface. The speed of the temperature gradient development depends on the type of soil and may vary from a few seconds to a few minutes.

The cooling effect is independent of the soil temperature and the magnitude of the cooling effect remains the same regardless of soil temperature.
Unique Features

Praetorian has a number of unique features which make it a market leading technology. The field programmable Gate array allows for ultra fast parallel processing of the returned signals meaning that Praetorian does not have to time splice or “skip” sections of time to keep up with incoming signals.

One distinct advantage with the Praetorian system is that it is able to work such that it is immune to the effects of a broken or cut fibre. The unit can be attached as a loop to both channels on independent fibres and in the event of a cut will report the damage, but continue to monitor the fibre on both sides up to the cut. Alternatively if installed in a non looped fashion Praetorian will monitor the position of the fibre end and check for any change to this. It can instantly identify a cut to the fibre.

In all distributed acoustic fibre sensors, the detected signal level has certain variations depending on polarization state of the received signal which produces scattering of the signal. This scattering can be constructive interference or deconstructive interference, and to date there has been no ability to compensate for this scattering which is referred to as Signal Fading.

HAWK has patented an effective solution to overcome signal fading, where small signals can be detected without fading.

Unlike systems restricted by Multimode LED light sources Praetorian uses a highly stable laser controlled to within ±0.04pm allowing the system to handle two independent sensing channels of up to 40km each without any loss of measurement in switching or time splicing.
Technical Specifications

<table>
<thead>
<tr>
<th>Category</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>Sensing Element</td>
<td>Fibre Optic Sensing Cable</td>
</tr>
<tr>
<td></td>
<td>Number of channels</td>
<td>1 or 2</td>
</tr>
<tr>
<td></td>
<td>Interrogator operating Temperature</td>
<td>0-50°C</td>
</tr>
<tr>
<td></td>
<td>Unit operating Humidity (max)</td>
<td>85% non-condensing</td>
</tr>
<tr>
<td></td>
<td>Dimensions</td>
<td>4RU 19” Rack Enclosure (190x600x490mm)</td>
</tr>
<tr>
<td></td>
<td>Weight</td>
<td>25kg</td>
</tr>
<tr>
<td></td>
<td>Power Supply</td>
<td>110-240VAC (50-60Hz), 24VDC</td>
</tr>
<tr>
<td></td>
<td>Power consumption</td>
<td><200W</td>
</tr>
<tr>
<td>Performance</td>
<td>Sensing Range</td>
<td>Up to 40km per channel</td>
</tr>
<tr>
<td></td>
<td>Spatial Resolution</td>
<td>250 or 500mm</td>
</tr>
<tr>
<td></td>
<td>Frequency Response</td>
<td>1Hz-120kHz (Range Dependant)</td>
</tr>
<tr>
<td></td>
<td>Dynamic Range</td>
<td>50dB</td>
</tr>
<tr>
<td></td>
<td>Temperature sensing range (cable)</td>
<td>-30°C to 200°C (special options for temps up to 800°C and down to -200°C available)</td>
</tr>
<tr>
<td>DTS Performance</td>
<td>Accuracy</td>
<td>±0.25°C</td>
</tr>
<tr>
<td></td>
<td>Resolution</td>
<td>0.01°C</td>
</tr>
<tr>
<td></td>
<td>Scan Time</td>
<td>1-2 Minutes (Depending on Temperature Parameters)</td>
</tr>
<tr>
<td></td>
<td>Temperature Sensing Range</td>
<td>-250°C to 700°C</td>
</tr>
<tr>
<td>Technical</td>
<td>Light Source</td>
<td>Laser (Infra red) Class 3B</td>
</tr>
<tr>
<td></td>
<td>Laser Wave Length</td>
<td>1550.12nm (nanometres)</td>
</tr>
<tr>
<td></td>
<td>Laser Stability</td>
<td>±0.04pm (picometers)</td>
</tr>
<tr>
<td></td>
<td>Acquisition rate</td>
<td>400MHz</td>
</tr>
<tr>
<td></td>
<td>Processor Acquisition Rate</td>
<td>64Bit (Ultra high speed)</td>
</tr>
<tr>
<td></td>
<td>Operating System</td>
<td>Linux</td>
</tr>
<tr>
<td></td>
<td>Output</td>
<td>Modbus over Ethernet (Standard), Relay and USB</td>
</tr>
<tr>
<td></td>
<td>Remote Interfacing</td>
<td>Ethernet and 3G/4G enabled</td>
</tr>
<tr>
<td></td>
<td>Processor architecture</td>
<td>Field programmable gate array (FPGA)</td>
</tr>
<tr>
<td></td>
<td>Data Storage (Removable)</td>
<td>2x 2TB HDD (removable)</td>
</tr>
<tr>
<td></td>
<td>Data Storage (Internal)</td>
<td>128GB Solid State Drive</td>
</tr>
</tbody>
</table>
Other Uses

This document covers the use of the Praetorian Fibre optic Sensing system utilising the Leak Detection System (LDS) software suite and hardware. However there are a large number of other applications Praetorian is well suited to monitor. These include but are not limited to:

- Perimeter Security
- Conveyer Malfunction and Fire Detection
- Fire Detection
- Infrastructure Strain and Stress Monitoring
- Borehole Condition Monitoring

Praetorian can be installed with Temperature, Vibration and Strain Modules and expanded to suit a wide range of sensing application.