Manual

Sultan
Acoustic Wave Series
Level, Flow, Positioning, Collision Protection

For more information, please visit >
www.hawkmeasure.com
Table of Contents
Sultan Acoustic Wave Series

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Components</td>
<td>3</td>
</tr>
<tr>
<td>Remote Amplifier</td>
<td>3</td>
</tr>
<tr>
<td>Panel Mount Remote Amplifier</td>
<td>3</td>
</tr>
<tr>
<td>Flange and Cone Assembly</td>
<td>4</td>
</tr>
<tr>
<td>Wiring The Unit</td>
<td>5</td>
</tr>
<tr>
<td>Sultan Remote Units</td>
<td>5</td>
</tr>
<tr>
<td>Sultan Integral Units</td>
<td>6</td>
</tr>
<tr>
<td>Sultan Panel Mount Units</td>
<td>7</td>
</tr>
<tr>
<td>Sultan SMART Units</td>
<td>8</td>
</tr>
<tr>
<td>Wiring 4-20mA Output</td>
<td>9</td>
</tr>
<tr>
<td>Junction Box / Transducer Cable Extension</td>
<td>9</td>
</tr>
<tr>
<td>Wiring Transducer for Anti Crosstalk</td>
<td>10</td>
</tr>
<tr>
<td>Digital Output Pulse Sequencing</td>
<td>11</td>
</tr>
<tr>
<td>Incorrect Mounting</td>
<td>12</td>
</tr>
<tr>
<td>Correct Mounting</td>
<td>13</td>
</tr>
<tr>
<td>Installation Guide</td>
<td>14</td>
</tr>
<tr>
<td>Installation Examples</td>
<td>16</td>
</tr>
<tr>
<td>Setting Your System</td>
<td>17</td>
</tr>
<tr>
<td>Dimensions</td>
<td>18</td>
</tr>
<tr>
<td>Integral Units</td>
<td>18</td>
</tr>
<tr>
<td>Remote Transducers</td>
<td>18</td>
</tr>
<tr>
<td>Flanges</td>
<td>19</td>
</tr>
<tr>
<td>Remote Amplifier</td>
<td>19</td>
</tr>
<tr>
<td>Minimum Measurement Range</td>
<td>20</td>
</tr>
<tr>
<td>Wiring Diagrams</td>
<td>21</td>
</tr>
<tr>
<td>AWR Remote Transmitter</td>
<td>21</td>
</tr>
<tr>
<td>AWI Integral Transmitter</td>
<td>21</td>
</tr>
<tr>
<td>Diagnostics & Software Overview</td>
<td>22</td>
</tr>
<tr>
<td>Quickset Flow Chart</td>
<td>23</td>
</tr>
<tr>
<td>Quickset Parameters</td>
<td>24</td>
</tr>
<tr>
<td>Application Types</td>
<td>25</td>
</tr>
<tr>
<td>Display Mode</td>
<td>27</td>
</tr>
<tr>
<td>Average Level</td>
<td>28</td>
</tr>
<tr>
<td>Differential Level</td>
<td>29</td>
</tr>
<tr>
<td>Advanced Setup Menu</td>
<td>30</td>
</tr>
<tr>
<td>Advanced Parameters</td>
<td>31</td>
</tr>
<tr>
<td>Output Adjustment Setup Menu</td>
<td>32</td>
</tr>
<tr>
<td>Output Adjustment Parameters</td>
<td>33</td>
</tr>
<tr>
<td>Relay Switch Actions</td>
<td>34</td>
</tr>
<tr>
<td>Relay 1 - 5</td>
<td>34</td>
</tr>
<tr>
<td>Comm Types Setup Menu</td>
<td>35</td>
</tr>
<tr>
<td>Modbus</td>
<td>36</td>
</tr>
<tr>
<td>HART / FF / PA</td>
<td>37</td>
</tr>
<tr>
<td>DeviceNet - Setup & Parameters / Wiring</td>
<td>38</td>
</tr>
<tr>
<td>Profibus DP - Setup & Parameters / Wiring</td>
<td>39</td>
</tr>
<tr>
<td>PC Comms - GosHawkII</td>
<td>40</td>
</tr>
<tr>
<td>Converting 234 Wire to 2 Wire Loop</td>
<td>41</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>42</td>
</tr>
<tr>
<td>Displays Distance</td>
<td>43</td>
</tr>
<tr>
<td>Output</td>
<td>44</td>
</tr>
<tr>
<td>Unit Voltage Specs & Checks</td>
<td>45</td>
</tr>
<tr>
<td>Remote & Integral</td>
<td>45</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>46</td>
</tr>
<tr>
<td>Error Codes 01 - 04</td>
<td>46</td>
</tr>
<tr>
<td>Technical Support</td>
<td>47</td>
</tr>
<tr>
<td>Part Numbering</td>
<td>48</td>
</tr>
<tr>
<td>Sultan Remote Transmitter</td>
<td>48</td>
</tr>
<tr>
<td>Sultan Remote Transducer 3" and 3.5"</td>
<td>49</td>
</tr>
<tr>
<td>Sultan Remote Transducer 2" Version</td>
<td>50</td>
</tr>
<tr>
<td>Sultan Integral 3" and 3.5"</td>
<td>51</td>
</tr>
<tr>
<td>Sultan Integral 2"</td>
<td>52</td>
</tr>
<tr>
<td>Flange Selection</td>
<td>53</td>
</tr>
<tr>
<td>Cone Selection</td>
<td>53</td>
</tr>
<tr>
<td>Transducer / Cone / Flange Combination Table</td>
<td>54</td>
</tr>
<tr>
<td>Accessories</td>
<td>54</td>
</tr>
<tr>
<td>Specifications</td>
<td>55</td>
</tr>
<tr>
<td>Specifications / Approvals & Certification</td>
<td>56</td>
</tr>
</tbody>
</table>
Remote systems consist of an amplifier and separate transducer of varying size & shape depending on frequency.

SMART & Integral units combine both the amplifier and transducer functions in a single housing.
1. Remove red cap (including cardboard).

2. Screw the flange assembly fully down onto the cone (as far down as it will go until the parts are tightly fastened).

3. Screw the transducer tightly down onto the flange and cone assembly.

4. Tighten the locking ring down to the flange to fix the components in place.

Note! Direction of flange, smallest ring this way up

COMPLETE ASSEMBLY (appearance above flange may differ for integral and smart units).

User mountings should only connect to the larger (lower) isolated mounting flange. No other part of the sensor assembly should touch any other structure or object.
The Sultan Remote amplifier has wiring information printed inside the flip lid of the unit.

Unscrew the lower flip lid to access the wiring terminals.

Ensure your power source is deactivated before handling power wires.

Pass cables through the cable entry gland before wiring into the terminal block.

To connect a wire, remove the required terminal block with pliers place the wire in firmly screw down the connection. The transducer terminals are labeled by colour on the PCB.

If you are connecting HawkLink communications, connect the blue wire to B and the white wire to A. The black wire can be connected to the DC- or GND terminal next to A.

Tighten cable entry gland(s) and cover to ensure sealing is effective.

Wiring The Unit

Sultan Acoustic Wave Series

Sourcing 4-20mA from Sultan

Sinking 4-20mA from user device

OR

234 wire version

<table>
<thead>
<tr>
<th>RELAY 1</th>
<th>RELAY 2</th>
<th>RELAY 3</th>
<th>RELAY 4</th>
<th>RELAY 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>COM</td>
<td>COM</td>
<td>COM</td>
<td>COM</td>
<td>COM</td>
</tr>
<tr>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>16</td>
<td>19</td>
<td>22</td>
<td>25</td>
<td>28</td>
</tr>
<tr>
<td>17</td>
<td>20</td>
<td>23</td>
<td>26</td>
<td>29</td>
</tr>
<tr>
<td>18</td>
<td>21</td>
<td>24</td>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>8</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>LS</td>
<td>4-20mA</td>
<td>LS</td>
<td>4-20mA</td>
<td>LS</td>
</tr>
<tr>
<td>RED</td>
<td>BLUE</td>
<td>WHITE</td>
<td>COMMS</td>
<td>DC-In</td>
</tr>
<tr>
<td>TRANS</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td>L</td>
</tr>
</tbody>
</table>
| Sinking 4-20mA from user device

2 wire version

<table>
<thead>
<tr>
<th>Test In</th>
<th>COMMS</th>
<th>A</th>
<th>B</th>
<th>Shld</th>
<th>Shld</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS</td>
<td>4-20mA</td>
<td>LS</td>
<td>4-20mA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*SAC-In is replaced by 36-60VDC with Power Input Option 'C'.

Use long nose pliers to extract terminals

Use long nose pliers to extract terminals
Sultan Integral Units

The Sultan Integral unit has wiring information printed inside the flip lid of the unit.

Unscrew the lid to expose the facia.

The lid can be snapped back to allow easier access for wiring. When finished, first re-snap the double hinge into position before closing the lid. The top half of the facia is a flip cover which exposes the wiring terminals.

Ensure your power source is deactivated before handling power wires.

Pass cables through the cable entry gland before wiring into the terminal block.

To connect a wire, push down on the button above the terminal with a small flat head screwdriver and place the wire in the terminal. Release the pressure on the button to close the terminal and then pull on the wire to check that it is secure.

If you are connecting HawkLink communications, connect the blue wire to B and the white wire to A. The black wire should be connected to the Shld terminal.

Tighten cable entry gland(s) and cover to ensure sealing is effective.

234 wire version

<table>
<thead>
<tr>
<th>RELAY 1</th>
<th>COMMS</th>
<th>RELAY 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC</td>
<td>COM</td>
<td>NC</td>
</tr>
<tr>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Shld</td>
<td>Shld</td>
<td>Shld</td>
</tr>
</tbody>
</table>

AC-In 4-20mA Test In

Sinking 4-20mA from user device

OR

Sourcing 4-20mA from Sultan

2 wire version

<table>
<thead>
<tr>
<th>COMMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>Shld</td>
</tr>
</tbody>
</table>

4-20mA Test In

Sinking 4-20mA from user device

Ensure that any unused cable gland entries are plugged or sealed.
Wiring The Unit
Sultan Acoustic Wave Series

Sultan Panel Mount Units

The Sultan Panel Mount has wiring information printed on the back of the unit.

Terminal blocks can be removed during installation to allow easier wire connection. Take care to return them to the correct position.

Ensure your power source is deactivated before handling power wires.

Ensure terminals are open by screwing counter clockwise with a flat head screwdriver. Place the exposed wires into the open terminals and tighten until firm.

The transducer terminals are labeled by colour on the back panel.

If you are connecting HawkLink communications, connect the blue wire to B and the white wire to A. The black wire can be connected to the DC- or GND terminal next to A.

234 wire version

<table>
<thead>
<tr>
<th></th>
<th>RELAY 1</th>
<th>RELAY 2</th>
<th>RELAY 3</th>
<th>RELAY 4</th>
<th>RELAY 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>COM</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>NO</td>
<td>L1</td>
<td>L1</td>
<td>L1</td>
<td>L1</td>
<td>L1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>A</th>
<th>RED</th>
<th>BLACK</th>
<th>BLUE</th>
<th>WHITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test In</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-In</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC-In</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANSDUCER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-20mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 wire version

<table>
<thead>
<tr>
<th></th>
<th>RELAY 1</th>
<th>RELAY 2</th>
<th>RELAY 3</th>
<th>RELAY 4</th>
<th>RELAY 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/C</td>
<td>A</td>
<td>B</td>
<td>RED</td>
<td>BLACK</td>
<td>BLUE</td>
</tr>
<tr>
<td>N/C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N/C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N/C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>COMMS</th>
<th>Test In</th>
<th>RED</th>
<th>BLACK</th>
<th>BLUE</th>
<th>WHITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRANSDUCER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-20mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sourcing 4-20mA from Sultan
Sinking 4-20mA from user device

OR

Sinking 4-20mA from user device
Wiring The Unit
Sultan Acoustic Wave Series

Sultan SMART Units

The Sultan SMART unit has wiring information printed inside the lid of the unit.

Screw Cap Version

Unscrew the lid to expose the terminals. It is recommended you remove the terminal block from the unit before wiring - to do this, insert a screw driver into one of the middle terminals to lever the block out.

Pass the cables through the cable entry gland before wiring in to the terminal block.

Ensure the terminal is open by screwing counter clockwise with a flat head screwdriver. Place the exposed wires into the open terminals and tighten until firm. Insert the block back into the unit when wiring is complete. Press firmly on the plug in terminal block to ensure it is fully home.

If you are connecting HawkLink communications, connect the blue wire to B and the white wire to A. The black wire can be connected to the DC- terminal next to B.

Tighten cable entry gland(s) and cover to ensure sealing is effective.

IP68 Sealed Cable Version

Connect the free ends of the cable following the wire colours as shown in the terminal diagrams.

AWSTA version

```
+-- COM --+
|     A    |
|   B    --|
|       COMMS |
|      4-20mA |
|       +    |
```

Sinking 4-20mA from user device (loop powered)

AWSTC version

```
+-- COM --+
|     A    |
|   B    --|
|       COMMS |
|      4-20mA |
|       +    |
```

AWSTD version

```
+-- COM --+
|     A    |
|   B    --|
|       COMMS |
|      4-20mA |
|       +    |
```

Sinking 4-20mA from user device
When connecting the 4-20mA output to a user device such as a PLC input, DCS or indicator, use a voltmeter to check the field wires to be used for the 4-20mA signal. If DC voltage around 24V is present, use sinking connection. If no voltage is present, use sourcing connection.

SOURCING Type Output

Sultan output is sourcing current and provides voltage to drive a passive load, PLC input, indicator or other user device.

![Sourcing Diagram]

SINKING Type Output (also 2 wire loop powered)

Sultan output is sinking current. Voltage to drive current loop must be provided by PLC, indicator, other user device or external DC supply.

![Sinking Diagram]

Junction Box / Transducer Cable Extension

Separate cable shielding from black wire at junction box.

![Junction Box Diagram]
The term crosstalk is used to refer to interference between acoustic wave units of the same frequency located near one another. The units can ‘hear’ direct or reflected signals from one another. This can cause randomly false measurements and outputs whilst giving correct performance at other times.

Crosstalk is more likely to exist when there are multiple units in a small enclosed area with highly reflective surfaces and with fast moving applications.

Wiring for Anti Crosstalk

1. Link all units to a common ground, or parallel connect their ‘GND’ or ‘DC-‘ terminals.
 *GND and DC- terminals are electrically connected inside Sultan 234 units, so either one may be used.

2. At each individual unit, wire a connection between a Relay (eg Relay 1) ‘Common’ terminal and the ‘TEST’ terminal of the same amplifier.

3. Wire a connection between the chosen Relay ‘Normally Open’ terminals of all units to be linked (parallel connection of all units).

4. In the Output Adjust menu for each unit program the chosen Relay to ‘FS’ (Fail-safe) mode.
 The units will now be linked so that they cannot crosstalk.

5. **(UPDATE MARCH 2012)**. New release software includes an additional menu in the ‘Output Adjust’ section called ‘test input’. The option ‘Synchronise’ improves the cross talk sequencing for larger amounts of units.

HAWK does not recommend more than 6 transducers in a single anti cross talk circuit.
A PLC/DCS with digital outputs can be used to control or sequence pulse rates.
These are examples of common **INCORRECT** mountings which can prevent the unit from operating correctly.

Do NOT mount near infeed

Do NOT mount over or adjacent to **any** obstacles

Do NOT mount cone or transducer face above roofline

Do NOT mount on angle in liquid applications
Correct Mounting
Sultan Acoustic Wave Series

Mount away from infeed

Mount away from all obstacles

Mount cone / transducer face within the vessel

Mount perpendicular to liquids
Amplifier
Select a suitable mounting position that is protected from direct sunlight. If necessary, utilize a sun hood (HAWK supplies purpose made sun hoods). Observe the minimum and maximum temperature limits (-20°C/-4°F to 60°C/140°F) Do not mount near sources of electrical noise such as high current cables, motor starters, or variable speed drives. Avoid mounting in high vibration areas such as handrails and rotating plant. Use rubber absorption mounts if mounting in light vibration areas. Protect the PCB assembly before knocking out the cable and conduit entry holes.

Panel Mount
• Select a suitable position within a panel layout which allows clearance around the outside of the front panel of the unit and also behind the panel for clearance around the screw fixing clamps used to retain the unit.
• Ensure that sufficient space is available behind the panel to accommodate the depth of the amplifier housing, and also allow cable bend clearance for wiring to the terminals on the rear of the amplifier.
• Mark and cut a 90x90mm (3.54x3.54") square cut out through the panel in the desired position.
• Insert the Sultan amplifier through the panel and install supplied screw clamps into the slotted holes in the amplifier housing.
• Tighten the screws until just firm to secure the amplifier in place.
• Connect wiring as required to the correct terminals on the removable rear panel connectors. When plugging connectors in to the rear panel, ensure that they are re-installed in the correct position.

Transducer
Selecting a suitable position to mount the transducer on the vessel is the single MOST IMPORTANT step. Please read all of the installation guide and contact your HAWK representative if you have any doubts or questions. The transducer face MUST be at least the blanking distance away from highest product level in the vessel.

Use common sense when selecting the transducer mounting position. A clear line of sight from the transducer to the product being monitored is required.

Take into account the change in material shape and level. The acoustic pulse must reflect back to the transducer.

Incorrect Mounting
Failure to mount the unit suitably can result in incorrect measurement and may cause process issues such as overfilling or damage to critical components.

Process Conditions
Ensure the process conditions within the vessel such as temperature, pressure and chemical composition of contents are within the specifications Sultan unit. The unit should not normally come into contact with the measured content.
Minimum Insertion
The transducer face or cone must be at least 50mm (2 inches) inside the tank.
If the transducer needs to be mounted above the roof line, use an appropriate standpipe or nozzle.

Moisture Seal
Sultan Integral and Smart units have cable glands with a moisture seal which must be tightened around the cable. Any unused glands must be plugged and sealed.

Transducer Location
It is vital that the Transducer has a clear view of the product surface at all times and is kept away from the inflow to avoid interference.

Blanking Distance
The unit will ignore any echoes and will never measure within its Blanking distance.
Minimum values must be respected. Where possible use the conservative values and increase this distance by 50% if there is foam, dust, steam, or condensation in the vessel being monitored. (Refer to Blanking Distance table.)
If using a flange mounting, use a rubber or neoprene gasket and washers. If using a nipple mounting, ensure that the mounting bracket is >6mm (0.24 in) from the rear of the transducer. Do not over tighten the lock nuts.

<table>
<thead>
<tr>
<th>Blanking Distance</th>
<th>Minimum</th>
<th>Nominal</th>
<th>Conservative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transducer Frequency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AWRT50 50kHz</td>
<td>0.25m (10")</td>
<td>0.3m (1ft)</td>
<td>0.35m (1.2ft)</td>
</tr>
<tr>
<td>AWRT40 40kHz</td>
<td>0.3m (1.1ft)</td>
<td>0.35m (1.2ft)</td>
<td>0.4m (1.4ft)</td>
</tr>
<tr>
<td>AWRT30 40kHz</td>
<td>0.35m (1.5ft)</td>
<td>0.4m (1ft)</td>
<td>0.5m (2.2ft)</td>
</tr>
<tr>
<td>AWRT20 20kHz</td>
<td>0.5m (2.2ft)</td>
<td>0.6m (1.3ft)</td>
<td>0.8m (2.6ft)</td>
</tr>
<tr>
<td>AWRT10 10kHz</td>
<td>1.0m (3.3ft)</td>
<td>1.1m (3.5ft)</td>
<td>1.3m (4.2ft)</td>
</tr>
<tr>
<td>AWRT5 5kHz</td>
<td>1.2m (3.9ft)</td>
<td>1.4m (4.6ft)</td>
<td>1.5m (5ft)</td>
</tr>
</tbody>
</table>

Always use conservative nominated distances if possible.
Installation Examples

Sultan Acoustic Wave Series

SOLID (Granular)
- Aim transducer at point of outfeed.

LIQUID
- Transducer should vertical

DUAL OUTFEED
- Two transducers may require anti-crosstalk wiring setup (see manual)

POWDER
- Mount away from infeed

MOUNTING POSITION

NOZZLE MOUNT
- Minimum 50mm

FLUSH MOUNT

STAND PIPE MOUNT
- Minimum 50mm

2" VERSION

Correct
- Vessel roof
- min 20mm inside tank

Incorrect
- Intrusive pipe

Incorrect
- Face must not be inside mounting

Threaded mounting should only be used where a flange/cone mounting is impossible. Hawk recommends & supplies focaliser cones for all transducers.
After the unit has been installed, mounted and powered you can now enter the Quickstart settings to get the unit operational in your application conditions.

Be sure to enter settings for High & Low level, App Type, Fill Rate and Empty Rate of your vessel.

If you are unsure of your specific fill & empty speed enter a value you are sure is faster than your process.

All of the mentioned settings (except Blanking) are in the ‘Quickset’ menu of the unit. You access this menu on the control pad by pressing CAL and entering Unlock code 0.

You may also need to set relay switch points. These are found in ‘Output Adjustment’. Relay alarms can be set on/off for hi/lo levels and failsafe.

![Diagram of tank with labels A to E, showing transducer face, end of blanking zone, high level, product level, and low level.](image)

(A) Transducer Face - Top of Flange
(B) End of Blanking Zone
(C) High Level or 100% (20mA) position.
(D) Product Level being measured
(E) Low Level or 0% (4mA) position.

High Level = Distance A to C
Low Level = Distance A to E
All cones must protrude into the main volume of the vessel by at least 50 mm (2 inches) past the lower end of the mounting nozzle.

Cone / Transducer Dimensions Table

<table>
<thead>
<tr>
<th>Sensor Frequency</th>
<th>Selected Flange</th>
<th>A (mm)</th>
<th>A (in.)</th>
<th>B (mm)</th>
<th>B (in.)</th>
<th>C (mm)</th>
<th>C (in.)</th>
<th>D (mm)</th>
<th>D (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 kHz</td>
<td>10"</td>
<td>236</td>
<td>10.0</td>
<td>455</td>
<td>17.9</td>
<td>840</td>
<td>33.1</td>
<td>750</td>
<td>29.5</td>
</tr>
<tr>
<td></td>
<td>8"</td>
<td>195</td>
<td>8.0</td>
<td>280</td>
<td>11.1</td>
<td>540</td>
<td>21.3</td>
<td>450</td>
<td>17.7</td>
</tr>
<tr>
<td>10 kHz</td>
<td>10"</td>
<td>236</td>
<td>10.0</td>
<td>455</td>
<td>17.9</td>
<td>540</td>
<td>21.3</td>
<td>450</td>
<td>17.7</td>
</tr>
<tr>
<td></td>
<td>8"</td>
<td>195</td>
<td>8.0</td>
<td>280</td>
<td>11.0</td>
<td>440</td>
<td>17.3</td>
<td>350</td>
<td>13.8</td>
</tr>
<tr>
<td>15 kHz</td>
<td>10"</td>
<td>236</td>
<td>10.0</td>
<td>455</td>
<td>17.9</td>
<td>440</td>
<td>17.3</td>
<td>350</td>
<td>13.8</td>
</tr>
<tr>
<td></td>
<td>8"</td>
<td>195</td>
<td>8.0</td>
<td>280</td>
<td>11.0</td>
<td>260</td>
<td>10.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 / 30 kHz</td>
<td>4"</td>
<td>98.5</td>
<td>4.0</td>
<td>280</td>
<td>11.0</td>
<td>390</td>
<td>15.4</td>
<td>300</td>
<td>11.8</td>
</tr>
<tr>
<td>30 / 40 / 50 kHz</td>
<td>4"</td>
<td>98.5</td>
<td>4.0</td>
<td>280</td>
<td>11.0</td>
<td>350</td>
<td>3.8</td>
<td>260</td>
<td>10.2</td>
</tr>
</tbody>
</table>
Flanges

Standard ANSI/DIN/JIS Flange Dimensions

<table>
<thead>
<tr>
<th>Size</th>
<th>Flange Type</th>
<th>E (PCD)</th>
<th>F (OD)</th>
<th>G (ID)</th>
<th>H (Hole)</th>
<th>No. Holes</th>
</tr>
</thead>
<tbody>
<tr>
<td>4"</td>
<td>FA4 ANSI class 150</td>
<td>190.5</td>
<td>7.5</td>
<td>229</td>
<td>9.0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>FD4 DIN100 PN10/16</td>
<td>180</td>
<td>7.1</td>
<td>220</td>
<td>8.7</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>FJ4 JIS B2220-1984 10kg</td>
<td>175</td>
<td>6.9</td>
<td>210</td>
<td>8.4</td>
<td>100</td>
</tr>
<tr>
<td>6"</td>
<td>FA6 ANSI class 150</td>
<td>241.5</td>
<td>9.5</td>
<td>279</td>
<td>11.0</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>FD6 DIN150 PN10</td>
<td>240</td>
<td>9.4</td>
<td>285</td>
<td>11.2</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>FJ6 JIS B2220-1984 10kg</td>
<td>240</td>
<td>9.4</td>
<td>280</td>
<td>11.0</td>
<td>150</td>
</tr>
<tr>
<td>8"</td>
<td>FA8 ANSI class 150</td>
<td>298.5</td>
<td>11.8</td>
<td>343</td>
<td>13.5</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>FD8 DIN200 PN10</td>
<td>295</td>
<td>11.6</td>
<td>340</td>
<td>13.4</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>FJ8 JIS B2220-1984 10kg</td>
<td>290</td>
<td>11.4</td>
<td>330</td>
<td>13.0</td>
<td>200</td>
</tr>
<tr>
<td>10"</td>
<td>FA10 ANSI class 150</td>
<td>362</td>
<td>14.3</td>
<td>406</td>
<td>16.0</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>FD10 DIN200 PN10</td>
<td>350</td>
<td>13.7</td>
<td>395</td>
<td>16.0</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>FJ10 JIS B2220-1984 10kg</td>
<td>355</td>
<td>14.0</td>
<td>400</td>
<td>15.7</td>
<td>250</td>
</tr>
</tbody>
</table>

Remote Amplifier
Each Transducer frequency has a different Blanking distance and recommended minimum distance (or high level) between the sensor face and measured product. This distance is measured from the sensor face or the bottom tip of flange down depending on model.

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Frequency</th>
<th>Minimum</th>
<th>Nominal</th>
<th>Conservative</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWRT50</td>
<td>50kHz</td>
<td>0.25m (10")</td>
<td>0.3m (1ft)</td>
<td>0.35m (1.2ft)</td>
</tr>
<tr>
<td>AWRT40</td>
<td>40kHz</td>
<td>0.3m (1ft)</td>
<td>0.35m (1.2ft)</td>
<td>0.4m (1.3ft)</td>
</tr>
<tr>
<td>AWRT30</td>
<td>30kHz</td>
<td>0.35m (1.2ft)</td>
<td>0.4m (1.3ft)</td>
<td>0.5m (1.6ft)</td>
</tr>
<tr>
<td>AWRT20</td>
<td>20kHz</td>
<td>0.45m (1.5ft)</td>
<td>0.6m (2ft)</td>
<td>0.7m (2.2ft)</td>
</tr>
<tr>
<td>AWRT15</td>
<td>15kHz</td>
<td>0.6m (2ft)</td>
<td>0.7m (2.2ft)</td>
<td>1.0m (3.2ft)</td>
</tr>
<tr>
<td>AWRT10</td>
<td>10kHz</td>
<td>0.75m (2.5ft)</td>
<td>1.1m (3.6ft)</td>
<td>1.3m (4.2ft)</td>
</tr>
<tr>
<td>AWRT05</td>
<td>5kHz</td>
<td>1.0m (3.2ft)</td>
<td>1.5m (4.9ft)</td>
<td>1.8m (5.9ft)</td>
</tr>
</tbody>
</table>

Always use conservative nominated distances if possible
AWR Remote Transmitter

AWR234

<table>
<thead>
<tr>
<th>RELAY 1</th>
<th>RELAY 2</th>
<th>RELAY 3</th>
<th>RELAY 4</th>
<th>RELAY 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>COM</td>
<td>COM</td>
<td>COM</td>
<td>COM</td>
<td>COM</td>
</tr>
<tr>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
</tbody>
</table>

- **Test In**: Red
- **COMMS**: Black
- **4-20mA**: Blue
- **N**: White

- **Shld**: A
- **A**: B
- **Sinking 4-20mA from user device**
- **Sourcing 4-20mA from Sultan**

AWI Integral Transmitter

AWI234

<table>
<thead>
<tr>
<th>RELAY 1</th>
<th>RELAY 2</th>
<th>COMMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC</td>
<td>NC</td>
<td>A</td>
</tr>
<tr>
<td>COM</td>
<td>COM</td>
<td>B</td>
</tr>
<tr>
<td>NO</td>
<td>NO</td>
<td>Shld</td>
</tr>
</tbody>
</table>

- **Test In**: Red
- **4-20mA**: Black
- **N**: Blue
- **AC-In**: White

- **Shld**: A
- **A**: B
- **Sinking 4-20mA from user device**
- **Sourcing 4-20mA from Sultan**

AWI2

<table>
<thead>
<tr>
<th>COMMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>Shld</td>
</tr>
</tbody>
</table>

- **Test In**: Red
- **4-20mA**: Black

- **Shld**: A
- **A**: B
- **Sinking 4-20mA from user device**
- **Sourcing 4-20mA from Sultan**
During running mode the Sultan will always display the selected primary display mode. There are further options referred to as ‘diagnostics’ which can be accessed using the arrow buttons which give immediate information about unit performance.

If you press the pushbuttons while the unit is in normal operation mode (displaying Space, Material% etc) the following diagnostic are shown (example values).

- **E: Echo** 4.2: Current distance the unit is detecting with each pulse (does not include output damping values)
- **S: Size** 1.11V: Echo size in volts - A high value (1.6-2V) indicates the unit may have too much gain for the current distance
- **Gn: Gain** 37.6%: Amount of gain applied at distance echo is detected
- **R: Recover** 2.3%: The amount of recover gain the unit is currently applying on top of normal gain to track the level
- **N: Noise** 1.9%: External noise level of similar frequency to Transducer (eg bulk solids filling)
- **T: Temperature** 23.2°C: Temperature at sensor face
- **Win Fwd** 3.6m: Tracking Window starting distance
- **Win Bk** 4.8m: Tracking Window finishing distance

Unit operational mode:
- **Normal** operation if tracked echo is above minimum threshold. Default minimum is 0.4V
- **Recover** if below minimum threshold, the unit will search for an echo for as long as the fail time
Quickset Flow Chart
Sultan Acoustic Wave Series

QuickSet
- **CAL**: Select unit of measurement from Feet, Metres, Centimeters, Inches

Unit
- **CAL**: Adjust vessel low level (maximum measured distance from transducer face)
- **CAL**: Adjust vessel high Level (minimum measured distance from transducer face)

Low Level
- **CAL**: Feet
- **CAL**: Metres
- **CAL**: Centimeters
- **CAL**: Inches

High Level
- **CAL**: 3.50mA
- **CAL**: 3.80mA
- **CAL**: 20.20mA

Fail Safe
- **CAL**: Fail Time
- **CAL**: Adjust Fail time (seconds)

App Type
- **CAL**: See P20 App types
- **CAL**: Fill Speed
- **CAL**: View or adjust fill rate (fast/med/slow/custom)

Display Mode
- **CAL**: Diff O/P
- **CAL**: Material%
- **CAL**: Flow
- **CAL**: Volume
- **CAL**: Flow Tbl
- **CAL**: Avg Matrl
- **CAL**: * See ‘Display Modes’ on page 27

Offset
- **CAL**: Adjust offset value

Amp Reset
- **CAL**: Resets Amplifier to default settings (quickset & output adj parameters)

Lock Code
- **CAL**: Set unlock code (default 0)

Note: If using GosHawk PC comms, after changing ‘app type’ you need to reset fill & empty rate to 1 and then enter your preferred values.
Quickset

To access to the Quickset parameter menu, press and hold the \textbf{CAL} button until “Unlock 0” is displayed on the LCD. Then use the \textbf{\textup{\uparrow\downarrow}} buttons to select the access code.

The factory default is 0.

\textbf{Unit}

Allows the user to select the units for display of measured distances and relay set point programming. The choices are metres / centimetres or feet / inches.

\textbf{Low Level}

Sets the distance from the face of the transducer that corresponds to the low level in the vessel being monitored (4mA analog output level).

\textbf{High level}

Sets the distance from the face of the transducer that corresponds to the High level in the vessel being monitored (20mA analog output level).

\textbf{Note:} There must be a minimum span of 100mm between high & low levels.

\textbf{Fail-Safe}

Allows the user to select their preferred fail safe condition the 4-20mA output will transmit when the unit enters fail safe mode. There are 5 possible mA output failure values. They are: 20mA, 4mA, Last Known, <4.00mA and >20.00mA.

\textbf{Application Type}

Allows the user to select the type & speed of the customer application to automatically program unit settings. See dedicated ‘Application type’ on next page.

\textbf{Display Mode}

Allows the user to select the primary display mode reading. Options are average material, diff o/p, space, material, material\%, flow, volume and flow tbl. ‘Space’ is default.

\textbf{Lock Code}

Allows the user to set an access code other than 0 to avoid unauthorised changes to the programming. Use the \textbf{\textup{\uparrow\downarrow}} buttons to select the desired access code.
HAWK introduced additional application types to the Sultan series in software v5.78 (released 16 March 2012) along with a basic selection of process speed of ‘fast’, medium, or ‘slow’. You can also manually select and adjust the fill & empty speeds (in selected unit per hour eg metres per hour) by using the ‘Custom’ option.

The application types are selectable in the ‘Quickstart’ menu. After you select the application type the first menu you will see is ‘view’. To modify the settings use the arrows to scroll to ‘fast’, ‘medium’, ‘slow’ or ‘custom’. ‘View’ displays the currently selected speeds.

Application Types

Sultan Acoustic Wave Series

<table>
<thead>
<tr>
<th>Application Type</th>
<th>Fast Fill</th>
<th>Empty</th>
<th>Med Fill</th>
<th>Empty</th>
<th>Slow Fill</th>
<th>Empty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bin Level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast</td>
<td>100m/h</td>
<td>100m/h</td>
<td>50m/h</td>
<td>50m/h</td>
<td>10m/h</td>
<td>10m/h</td>
</tr>
<tr>
<td>Med</td>
<td>50m/h</td>
<td>50m/h</td>
<td>10m/h</td>
<td>10m/h</td>
<td>5m/h</td>
<td>5m/h</td>
</tr>
<tr>
<td>Slow</td>
<td>10m/h</td>
<td>10m/h</td>
<td>5m/h</td>
<td>5m/h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast</td>
<td>20m/h</td>
<td>20m/h</td>
<td>10m/h</td>
<td>10m/h</td>
<td>5m/h</td>
<td>5m/h</td>
</tr>
<tr>
<td>Med</td>
<td>10m/h</td>
<td>10m/h</td>
<td>5m/h</td>
<td>5m/h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slow</td>
<td>5m/h</td>
<td>5m/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast</td>
<td>100m/h</td>
<td>100m/h</td>
<td>50m/h</td>
<td>50m/h</td>
<td>10m/h</td>
<td>10m/h</td>
</tr>
<tr>
<td>Med</td>
<td>50m/h</td>
<td>50m/h</td>
<td>10m/h</td>
<td>10m/h</td>
<td>5m/h</td>
<td>5m/h</td>
</tr>
<tr>
<td>Slow</td>
<td>10m/h</td>
<td>10m/h</td>
<td>5m/h</td>
<td>5m/h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conveyor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast</td>
<td>6000m/h</td>
<td>6000m/h</td>
<td>3000m/h</td>
<td>3000m/h</td>
<td>1000m/h</td>
<td>1000m/h</td>
</tr>
<tr>
<td>Med</td>
<td>3000m/h</td>
<td>3000m/h</td>
<td>1000m/h</td>
<td>1000m/h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slow</td>
<td>1000m/h</td>
<td>1000m/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crusher</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast</td>
<td>800m/h</td>
<td>800m/h</td>
<td>200m/h</td>
<td>200m/h</td>
<td>20m/h</td>
<td>20m/h</td>
</tr>
<tr>
<td>Med</td>
<td>200m/h</td>
<td>200m/h</td>
<td>100m/h</td>
<td>100m/h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slow</td>
<td>20m/h</td>
<td>20m/h</td>
<td>5m/h</td>
<td>5m/h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast</td>
<td>6000m/h</td>
<td>6000m/h</td>
<td>3000m/h</td>
<td>3000m/h</td>
<td>1000m/h</td>
<td>1000m/h</td>
</tr>
<tr>
<td>Med</td>
<td>3000m/h</td>
<td>3000m/h</td>
<td>1000m/h</td>
<td>1000m/h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slow</td>
<td>1000m/h</td>
<td>1000m/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron Ore</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast</td>
<td>100m/h</td>
<td>100m/h</td>
<td>50m/h</td>
<td>50m/h</td>
<td>5m/h</td>
<td>5m/h</td>
</tr>
<tr>
<td>Med</td>
<td>50m/h</td>
<td>50m/h</td>
<td>10m/h</td>
<td>10m/h</td>
<td>5m/h</td>
<td>5m/h</td>
</tr>
<tr>
<td>Slow</td>
<td>5m/h</td>
<td>5m/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquids</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast</td>
<td>200m/h</td>
<td>200m/h</td>
<td>100m/h</td>
<td>100m/h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Med</td>
<td>100m/h</td>
<td>100m/h</td>
<td>50m/h</td>
<td>50m/h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slow</td>
<td>50m/h</td>
<td>50m/h</td>
<td>10m/h</td>
<td>10m/h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agitated Liquids</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast</td>
<td>200m/h</td>
<td>200m/h</td>
<td>100m/h</td>
<td>100m/h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Med</td>
<td>100m/h</td>
<td>100m/h</td>
<td>50m/h</td>
<td>50m/h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slow</td>
<td>50m/h</td>
<td>50m/h</td>
<td>10m/h</td>
<td>10m/h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ore</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast</td>
<td>100m/h</td>
<td>100m/h</td>
<td>50m/h</td>
<td>50m/h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Med</td>
<td>50m/h</td>
<td>50m/h</td>
<td>10m/h</td>
<td>10m/h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slow</td>
<td>5m/h</td>
<td>5m/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plastics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast</td>
<td>20m/h</td>
<td>20m/h</td>
<td>10m/h</td>
<td>10m/h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Med</td>
<td>10m/h</td>
<td>10m/h</td>
<td>5m/h</td>
<td>5m/h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slow</td>
<td>5m/h</td>
<td>5m/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application Types</td>
<td>Positioning</td>
<td>Solids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>----------------------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast Fill</td>
<td>4000m/h Empty 4000m/h</td>
<td>Fast Fill 100m/h Empty 100m/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Med Fill</td>
<td>2000m/h Empty 2000m/h</td>
<td>Med Fill 50m/h Empty 50m/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slow Fill</td>
<td>1000m/h Empty 1000m/h</td>
<td>Slow Fill 10m/h Empty 10m/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Powder</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast Fill</td>
<td>30m/h Empty 30m/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Med Fill</td>
<td>15m/h Empty 15m/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slow Fill</td>
<td>5m/h Empty 5m/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reflective</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast Fill</td>
<td>20m/h Empty 20m/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Med Fill</td>
<td>10m/h Empty 10m/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slow Fill</td>
<td>5m/h Empty 5m/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROM Bin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast Fill</td>
<td>1200m/h Empty 4000m/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Med Fill</td>
<td>700m/h Empty 250m/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slow Fill</td>
<td>300m/h Empty 100m/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silo Level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast Fill</td>
<td>100m/h Empty 100m/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Med Fill</td>
<td>50m/h Empty 50m/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slow Fill</td>
<td>10m/h Empty 10m/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slurry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast Fill</td>
<td>100m/h Empty 100m/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Med Fill</td>
<td>50m/h Empty 50m/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slow Fill</td>
<td>20m/h Empty 20m/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stockpile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast Fill</td>
<td>200m/h Empty 200m/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Med Fill</td>
<td>50m/h Empty 50m/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slow Fill</td>
<td>20m/h Empty 20m/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sump</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast Fill</td>
<td>200m/h Empty 200m/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Med Fill</td>
<td>40m/h Empty 40m/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slow Fill</td>
<td>10m/h Empty 10m/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Sump</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast Fill</td>
<td>1000m/h Empty 1000m/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Med Fill</td>
<td>300m/h Empty 300m/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slow Fill</td>
<td>20m/h Empty 20m/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tank Level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast Fill</td>
<td>200m/h Empty 200m/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Med Fill</td>
<td>50m/h Empty 50m/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slow Fill</td>
<td>5m/h Empty 5m/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Non-standard display modes

AvgMatrl and Diff O/P are special operation modes which require two transducers connected to an amplifier via a junction box. Avg Matrl calculates the average level measured by the two transducers and Diff O/P calculates the difference in level between the two transducers. You will need to assign one transducer to ID2. To do this connect only one of the transducers, enter ‘Quickset’ and change the display mode to AvgMatrl or Diff O/P. Scroll down until you see 1:Sen Add 1 option, press CAL, select ‘1’ for current transducer and press CAL again. The menu then proceeds to Tx Add:, press CAL to edit, pres UP to scroll from 1 to 2 and press CAL to save. The currently connected transducer is now on ID2 - you can now connect the other transducer to the junction box which will be ID1 to complete the measurement pair required for Average & Differential measurement.

The Flow option can be used for basic open channel flow applications with a known Exponent value of the flume/channel/weir and the known max flow rate. Low & High level need to be set to represent the distance from the transducer face of 0-100% possible flow of the application. For more comprehensive flow measurement please see the dedicated flow measurement unit the Sultan Flow.

Press RUN twice at any time to revert to normal operation
What is Average Level?

Average Level (AvgMatrl) is used to measure the average of two levels using two Transducers and one amplifier providing one output. The Transducers are referred to as Sensor 1 and Sensor 2.

Average Material Calculation

The display mode ‘AvgMatrl’ (Average Material) gives a result calculated as follows:

\[
\text{AvgMatrl} = \text{LowLevel} - \text{AvgSpace}
\]

\[
\text{AvgSpace} = \frac{(\text{Space1} + \text{Space2} + \text{offset})}{2}
\]

Analog Output

Analog output is calculated based on the average material level.

The span of the analog output is defined by the LowLevel and HiLevel parameters. The analog output is calculated as follows:

\[
\text{Current (mA)} = 16 \times \text{AvgMatrl} / (\text{LowLevel} - \text{HiLevel}) + 4mA
\]

Relays

The relays are switched based on the average space value. The relay set points L1 and L2 should be set considering the average space values at which the relay is required to switch.

Setting Sensor ID

You will need to assign one transducer to ID2. To do this perform the following steps:

1. Connect only one of the transducers
2. Enter ‘Quickset’ and change the display mode to AvgMatrl
3. Scroll down until you see 1:Sen Add 1 option.
4. Press CAL to edit. Select ‘1’ for current transducer and press CAL again.
5. Press CAL to edit, press UP to scroll from 1 to 2 and press CAL to save.

The menu then proceeds to Tx Add:

The currently connected transducer is now on ID2.

You can now connect the other transducer to the junction box which will be ID1 to complete the measurement pair required.

Accessing both Sensors Parameters

Both Sensor 1 and Sensor 2 parameters can be accessed through the KeyPad.

The parameter ‘Sensor’ in ‘Advanced’ determines which sensor (1 or 2) will be currently accessed if required to adjust settings.

Note: Average level requires a junction box AWRT-JB-01
What is Differential Level?

Differential Level (Diff O/P) is the term used to define the measured difference between two material levels using two Transducers. The Transducers are referred to as Sensor 1 and Sensor 2.

Diff Calculation

In differential Mode the material level measured by Sensor 1 is subtracted from the material level measured by Sensor 2. Negative results will be reset to zero. The differential value is calculated as follow:

\[\text{Diff} = \text{MaterialLevel2} - \text{MaterialLevel1} \]
\[\text{MaterialLevel2} = \text{LowLevel2} - \text{Space2} \]
\[\text{MaterialLevel1} = \text{LowLevel1} - \text{Space1} \]

Analog Output

Analog output is calculated based on the differential value.

The span of the analog output is according to the Lowlevel1 and Hilevel1. The analog output is calculated according the following equation:

\[\text{Current (mA)} = 16 \times \frac{\text{Diff}}{\text{LowLevel1} - \text{HiLevel1}} + 4\text{mA} \]

Setting Sensor ID

You will need to assign one transducer to ID2.

To do this perform the following steps:

1. Connect **only one** of the transducers
2. Enter ‘Quickset’ and change the display mode to **AvgMatrl**
3. Scroll down until you see 1:Sen Add 1 option.
4. Press CAL to edit. Select ‘1’ for current transducer and press CAL again.
5. The menu then proceeds to Tx Add;,
6. Press CAL to edit, press UP to scroll from 1 to 2 and press CAL to save.

The currently connected transducer is now on ID2.

You can now connect the other transducer to the junction box which will be ID1 to complete the measurement pair required.

Accessing both Sensors Parameters

Both Sensor 1 and Sensor 2 parameters can be accessed through the KeyPad.

The parameter ‘Sensor’ in ‘Advanced’ determines which sensor (1 or 2) will be currently accessed if required to adjust settings.

Relays

<table>
<thead>
<tr>
<th>Relay Mode = EN (L1 < L2)</th>
<th>Relay Mode = DEN (L1 < L2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>L2 = Diff2</td>
<td>L2 = Diff2</td>
</tr>
<tr>
<td>L1 = Diff1</td>
<td>L1 = Diff1</td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
</tr>
</tbody>
</table>
Advanced settings adjusts the transducer sensing characteristics. It is not recommended you adjust these settings unless you are familiar with the effect they will have on your unit.

Advanced

- **Gain4**: Adjust transducer start gain (sensitivity to echoes)
- **GainStep3**: Adjust gain step 3%
- **DistStep3**: Adjust distance of gain step 3
- **EchoSize**: Unit attempts to maintain an echo strength of this value
- **Threshold**: Unit attempts to maintain an echo strength of this value
- **Blanking**: Adjust blanking from transducer face. Unit will not track within this distance
- **Empt Dist**: Vessel empty distance. Unit will not track beyond this distance
- **Temp Trim**: Adjust temperature trim compensation
- **Dist Trim**: Adjust distance trim compensation
- **Velocity**: Adjust sound velocity compensation for applications where speed of sound is different.
- **Map Dist**: Echo Mapping: Distance to be mapped from transducer face
- **Map Used**: Echo Mapping: On or Off
- **Map Echo**: Unit performs echo mapping routine
- **Map Marg**: Adjust mapping margin
- **TX Reset**: Restore Transducer settings to factory default. ‘App type’ settings will need to be re-selected

Press RUN twice to revert to normal operation

Press CAL to pulse the unit while adjusting Tx settings. Distance to level will be shown.
Gain4 (Gn):
This parameter is to increase or decrease the starting Gain4 value (sensitivity to return echoes). Gain4 is the primary gain control. The start point of this % is after Gain Step 3 / Distance Step 3.

The result of changes can be seen immediately by pressing CAL while adjusting the % (the unit will pulse once and display distance & echo size). A ‘good’ signal size is approximately 0.8V. A signal above 2V suggests Gain4 is too high.

Gain Step 3 / Distance Step 3 (G3 / D3):
Normally G3 and D3 are considered and adjusted as a pair, and should only need adjustment to assist in ‘high level’ lock ups or structures close to and around the transducer face (see troubleshooting / locking onto high level).

The result of changes can be seen immediately by pressing CAL while adjusting the % (the unit will pulse once and display distance & echo size).

EchoSize
The unit uses automatic gain control to maintain echo size to this value. While the unit is operating it is displayed as the diagnostic S:. The default settings for solid based applications is 0.6V and for Liquid based applications 0.8V.

Threshold
Threshold is the minimum echo size the unit will track. Any echo which passes this value (0.39V) the unit will use automatic gain control to track and hold to the EchoSize.

Blanking
The Blanking Distance is the minimum amount of space which should be between the transducer face and the product being monitored. This distance is a blank zone, the unit will not track anything within this distance.

Where possible use the conservative values and increase this distance by 50% if there is foam, dust, steam, or condensation.

See also ‘Minimum Measurement Range’

Empty Distance
The Empty Distance is similar to Blanking, the unit will not track any echoes beyond this distance. Be conservative with this value, any empty bin with a conical bottom may require additional distance due to pulses reflecting of the cone angle before returning to the sensor face.

Digital Mapping
Digital mapping is a process where the unit scans a vessel for all potential false echoes and applies a filter to ignore them. Mapping should be considered a last resort, it may interfere with the units ability to follow the process level if not applied correctly.

Map Distance
The total distance (measured from transducer face) the unit will map.

Map Echo
Commences mapping process.

Map Used
Select only a portion of the Map Distance to use parameter (measured from transducer face)

Map Margin
This value is the amount of gain applied to the mapped echoes. This value should be adjusted in small amounts, if the value is set too high the mapped echoes will be very large resulting in the unit struggling to correctly following process level while it passes the mapped area.
Output Adjustment Setup Menu

Adjust Fill Damping
0-999

Adjust Empty Damping
0-999

Adjust 4.00mA for remote indicator

Adjust 20mA for remote indicator

Flip the high/low output to 4-20mA or 20-4mA

Simulate distance with 4-20mA change

See Comms Types on page 35

L1 = Relay ON dist.
L2 = Relay OFF dist

Switch on/off LCD backlight

Adjust number of characters per line on display 8 or 12

When active the unit will switch to failsafe mode if input voltage drops below required power. When not active unit will display 'V fail' but not enter failsafe mode.

Press RUN twice to revert to normal operation
Output Adjustment Parameters

Output Adjustment settings configure Analog, Relay and communication settings. You can also adjust the fill and empty damping for smoother mA output readings.

Fill & Empty Damping
Allows the user to define how quickly the unit responds to changes in the measured level. A low damping value gives a fast response and a high damping gives a slow response. The damping limits are from 0 to 999. Eg: If you set the damping to a value of 10, the displayed distance will be a rolling average of the last 10 pulses. The displayed distance includes the 4-20mA output and the default display mode value. Generally it is recommended this value is not lower than 5-10 for fast filling applications.

4mA Adj & 20mA Adj
Whilst the display shows ‘4mA Adj’ or ‘20mA Adj’, the analog (4-20mA) current output will be forced to its respective 4mA or 20mA state. The actual loop current can be measured with an external meter and calibrated exactly by pressing the **UP** or **DOWN** arrows until the external meter reads exactly 4.000mA or 20.000mA. Pressing the **CAL** button will store the calibration in the instruments memory.

Analog
4-20/20-4mA The analog current output of the instrument can be set to act in the normal (4-20mA) or reverse (20-4mA). The default condition is 4-20mA, where the furthest distance from the transducer (low level) is output as 4mA, and current increases with filling to the closer (high level) span point of 20mA.

Simulate
(Y/N): Select Y to access measurement simulation mode. In simulation mode, the **UP** and **DOWN** arrow keys vary the distance on the display. The current output and any relays used will behave exactly as they should do if the measured distance (in SPACE mode without damping) was that shown on the display.

This mode can be used to test correct behavior of outputs, or externally connected equipment.

Relays
Allows the user to set the relays for switching. The relays are programmed in a distance from the transducer face to the position where switching is required. Relays work in the following manner:

- **OFF** The relay will always remain off
- **FS** If FS is selected, the relay will operate as a fail safe relay. The relay will be energised at all times and will de-energise if the ultrasonic switch goes in to failsafe condition or if anything interferes with the unit’s ability to keep the relay energised.

See also ‘Relay Functions’ for further information about the Relay switching on the next page.

Bk Light
Switch on/off LCD backlight

DispChar
Adjust number of characters per line 8 or 12. Some older units may have an 8 character display only.

V in Chk
The Sultan automatically detects if the input voltage below 9.5V for 234 wire units and 7V for 2 wire units. When this mode is active the unit will begin its failsafe routine and eventually display V fail. When not active the unit will still display the message ‘Input voltage too low’.
Relay Switch Actions
Sultan Acoustic Wave Series

Relay 1 - 5

<table>
<thead>
<tr>
<th>Sub-Menu</th>
<th>Description</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>RlyL1 1-5</td>
<td>Adjust Relay switch point (L1 must be < L2)</td>
<td>Adjustable</td>
</tr>
<tr>
<td>RlyL2 1-5</td>
<td>Adjust Relay switch point (L2 must be > L1)</td>
<td>Adjustable</td>
</tr>
</tbody>
</table>

- Set Relay Parameters in Output Adjustment menu
- The two relay levels are RlyL1 and RlyL2
- The display will show RlyL1, the last 1 indicated the Relay number (eg 1 to 5)
- L1 and L2 distances are measured from the transducer face

Relay Action

<table>
<thead>
<tr>
<th>State 1</th>
<th>Energise EN</th>
<th>DeEnergise DEN</th>
<th>FailSafe FS</th>
<th>FailSafe FS</th>
<th>OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>NC COM NO</td>
</tr>
<tr>
<td>L2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NC COM NO</td>
</tr>
</tbody>
</table>

- HIGH LEVEL or FALLING LEVEL

<table>
<thead>
<tr>
<th>State 2</th>
<th>Energise EN</th>
<th>DeEnergise DEN</th>
<th>FailSafe FS</th>
<th>FailSafe FS</th>
<th>OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>NC COM NO</td>
</tr>
<tr>
<td>L2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NC COM NO</td>
</tr>
</tbody>
</table>

- LOW LEVEL or RISING LEVEL

POWER FAILURE

- NC COM NO
All HAWK products come standard with Modbus. If a unit supports additional communications protocols, it will be indicated on the wiring label inside the unit and the part number.

Foundation Fieldbus and Profibus PA have stand alone manuals located in the downloads-manuals section of www.hawkmeasure.com
Modbus setup & basic spans & diagnostic registers for HAWK Sultan Series instruments v3.85 and later.

Protocol: Modbus RTU (2 wire)
Speed: 19200 Baud
Data bits: 8
Parity: None
Stop Bits: 1

HAWK Sultan series units act as ‘slave’ devices on a Modbus network.

Units are shipped from the factory with a default Modbus address of 1. The Modbus address of any unit can be changed individually if units are to be connected in a multi-drop network. Each address number must only be used once on any network (possible addresses are 1-255).

Diagnostic Block (Read Only): *Can be read as Singles or any Block wholly within the limits of this range of addresses*

- 40123 - LOW LEVEL span set point in mm
- 40124 - HIGH LEVEL span set point in mm
- 40125 - DISPLAYED DISTANCE (DISTANCE) in mm
- 40127 - NEW DISTANCE (E-DISTANCE) in mm
- 40128 - CONFIRM DISTANCE (C-DISTANCE) in mm
- 40129 - ECHO SIZE in Volts/102
- 40130 - GAIN at Echo detection point in %/7.5
- 40131 - NOT USED (Gain Limit)
- 40132 - RECOVER GAIN in %/7.5
- 40133 - NOISE in %/7.5
- 40134 - TEMPERATURE in Degrees K/10 ((DegreesC - 273.2)/10)
- 40136 - CONFIRM COUNTER current value
- 40137 - HOLD COUNTER current value
- 40139 - WINDOW FORWARD POSITION in mm
- 40140 - WINDOW BACK POSITION in mm

Span Adjustment (Read/Write) MUST Read/Write SINGLES-NOT BLOCKS:

- 40012 - LOW LEVEL span set point in mm
- 40013 - HIGH LEVEL span set point in mm

Relay Function Adjustment (Read/Write) MUST Read/Write SINGLES-NOT BLOCKS:

- 40051 - Relay 1 Mode setting
 - 0-OFF
 - 1-FS (Failsafe)
 - 2-EN (Energise on Level)
 - 3-DEN (De-Energise on Level)
- 40052 - Relay 2 Mode setting (see Relay 1)
- 40053 - Relay 3 Mode setting (see Relay 1)
- 40054 - Relay 4 Mode setting (see Relay 1)
- 40055 - Relay 5 Mode setting (see Relay 1)
- 40035 - Relay 1 L1 set point in mm
- 40036 - Relay 1 L2 set point in mm
- 40037 - Relay 2 L1 set point in mm
- 40038 - Relay 2 L2 set point in mm
- 40039 - Relay 3 L1 set point in mm
- 40040 - Relay 3 L2 set point in mm
- 40041 - Relay 4 L1 set point in mm
- 40042 - Relay 4 L2 set point in mm
- 40043 - Relay 5 L1 set point in mm
- 40044 - Relay 5 L2 set point in mm
Extended Parameters (Read/Write) **MUST** Read/Write SINGLES-NOT BLOCKS*

40059 - DISPLAY UNITS
- 3-Millimetres
- 4-Centimetres
- 5-Metres
- 6-Feet
- 7-Inches

40014 - FAILSAFE MODE
- 0 - 3.5mA
- 1 - 3.8mA
- 2 - 20.2mA
- 3 - Last Known
- 4 - 4.0mA
- 5 - 20.0mA

40015 - FAILSAFE TIME (seconds)

40016 - APPLICATION TYPE
- 0 - Liquid
- 1 - Solid
- 2 - Slurry
- 3 - Position

40017 - FILL RATE (metres per hour/10)

40018 - EMPTY RATE (metres per hour/10)

40019 - DISPLAY MODE
- 1 - Volume
- 2 - Flow
- 3 - Material %
- 4 - Material
- 5 - Space
- 6 - Differential Output
- 7 - Average Material

40032 - OFFSET (mm)

40020 - LOCK CODE

40021 - FILL DAMPING

40022 - EMPTY DAMPING

40063 - ANALOG
- 0 - 4-20mA (4mA low, 20mA high - standard)
- 1 - 20-4mA (20mA low, 4mA high - inverted)

40447 - GAIN parameter setting in %/7.5

40448 - GAIN STEP in %/7.5

40449 - DISTANCE STEP (mm)

40450 - THRESHOLD in Volts/100

40451 - BLANKING (mm)

40452 - EMPTY DISTANCE (mm)

HART

Basic functions / commands only

PV Measurement
Measured Units
Analog Value
Percent Range
Upper Range Value
Lower Range Value
Damping

Profibus PA / Foundation Fieldbus

Foundation Fieldbus and Profibus PA have stand-alone manuals located in the downloads-manuals section of www.hawkmeasure.com
Setting the Baud Rate and the DeviceNet Address

The DeviceNet factory default of Baud Rate and FBus Address are 125kbps and 63 in a Sultan unit with. To modify these values follow the instructions below.

1. Go to the ‘Output Ad’ menu
2. Use the Up and Down push buttons to reach the CommType parameter
3. Make sure that the CommType is set to ‘DeviceNet’
4. Press the CAL button twice
5. DeviceID will be displayed - this ID is for Modbus networking, do not adjust.
6. Use the Down push button to reach the BaudRate parameter
7. The default value for the BaudRate is 125kbps. Press CAL button and use the Up and Down push buttons to modify this value
8. Press CAL button when finished
9. Use the Down push button to reach the FBusAdds. The default value of the FieldBus Address is 63. Press CAL button and use the Up and Down push buttons to modify this value
10. Press CAL button again when finished
11. Press RUN to save and several times again to return the unit to operating mode.

Output Data

Profibus/DeviceNet now transmit 18 bytes/9 words, description of the words is as follows (For firmware version 5.54 and above).

1. Displayed Distance
 (Space Distance is the Primary Variable)
2. Percentage (Percent of Range)
3. Hi Level (Upper Range)
4. Low Level (Lower Range)
5. Status Flags
 Bit0 = Echo was received inside the span.
 Bit1 = Echo is Confirmed.
 Bit3 = Searching is searching for an Echo.
 BitF = Unit has Failed to detect an Echo.
6. Displayed Distance2 (Second Variable)*
7. Percentage2 (Second Percent of Range)*

*Used for Differential output on a Sultan

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>Failed</td>
</tr>
<tr>
<td>E</td>
<td>~~~~~~</td>
</tr>
<tr>
<td>3</td>
<td>Search</td>
</tr>
<tr>
<td>1</td>
<td>Echo Cfm : 1 = , True, 0 = False</td>
</tr>
<tr>
<td>0</td>
<td>Echo R : 1 = , True, 0 = False</td>
</tr>
</tbody>
</table>

Integral

```
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>shld</th>
<th>A</th>
<th>B</th>
<th>shld</th>
<th>NC</th>
<th>COM</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Remote

```
<table>
<thead>
<tr>
<th>LI</th>
<th>N</th>
<th>shld</th>
<th>GND</th>
<th>24V+</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>V+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>CAN_H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>SHEILD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>CAN_L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>V-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
Setting the Profibus DP Address

Factory defaults of FBusAdds is 126 in a Sultan unit with Profibus CommType. To modify this value follow the instruction below:

1. Go to the ‘Output Ad’ menu
2. Use the Up and Down push buttons to reach the CommType parameter
3. Make sure that the CommType is set to ‘Profibus’
4. Press the CAL button twice
5. DeviceID will be displayed - this ID is for Modbus networking, do not adjust.
6. Use the Down push button to view the BaudRate parameter. The value for the BaudRate is selected automatically and can not be modified.
8. Use the Down push button to reach the FBusAdds. The default value of the FieldBus Address is 126. Press CAL button and use the Up and Down push buttons to modify this value.
9. Press CAL button again when finish.
10. Press RUN several times to return the unit to operating mode.

Output Data

DeviceNet now transmits 18 bytes/9 words, description of the words is as follows (For firmware version 5.54 and above)

1. Displayed Distance
 (Space Distance is the Primary Variable)
2. Percentage (Percent of Range)
3. Hi Level (Upper Range)
4. Low Level (Lower Range)
5. Status Flags
 Bit0 = Echo was received inside the span.
 Bit1 = Echo is Confirmed.
 Bit3 = Searching is searching for an Echo.
 BitF = Unit has Failed to detect an Echo.
6. Displayed Distance2 (Second Variable)*
7. Percentage2 (Second Percent of Range)*

*Used for Differential output

Wiring

<table>
<thead>
<tr>
<th>Bit F</th>
<th>Bit E</th>
<th>Bit 3</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed</td>
<td>~~~~~</td>
<td>Search</td>
<td>0</td>
<td>Echo Cfm: 1 = , True, 0 = False</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Echo R: 1 = , True, 0 = False</td>
</tr>
</tbody>
</table>
HAWK provides free in-house developed software called GosHawkII. This software is supported by all current products and is used by HAWK Engineers & HAWK authorised representatives during commissioning, testing and monitoring unit performance.

The software allows easy access to unit setup menus using a PC rather than the keypad and gives a visual representation of what the unit is seeing (all echoes which pass the unit filter), transmitting and displaying on the unit face.

The best and easiest way to set up, troubleshoot and monitor a HAWK unit is via GosHawkII.

To connect to a unit using this software you need either a HawkLink modem or HawkLink USB connector.

For a multidrop network GosHawkII uses a Modbus ID to identify each unit.
Sultan234 units can be switched to 2 wire loop mode by flipping a SMART card on the analogue module. The module is located behind the display and will have MOD-AN moulded on the plastic as well as a sticker indicating the orientation of the SMART card for both modes.

The card is secured by a small brown plastic lock. Gently lift both tips of the plastic lock until they click up to release the lock. Gently lift the card out and flip to the required mode. Place the card back in and re-lock down the plastic bracket.

The procedure is delicate, it is recommended to be performed in a workshop or lab and not in the field.

Sultan Acoustic Wave Series

Remove screws

SMART Card Orientation

2 WIRE LOOP

3, 4 WIRE

2 WIRE LOOP POWER CONFIGURATION
3, 4 WIRE CONFIGURATION

Refer to manual for wiring
Incorrect wiring WILL CAUSE DAMAGE
39. Unit displays or transmits distance that is higher than the actual level / unit is locking on high level
40. Output doesn’t match level during filling / emptying
40. Output is erratic / inconsistent
40. Replacing the amplifier or transducer
41. Hardware checks - Voltage & Resistance (Remote & Integral)
42. Error Codes
43. Contacting HAWK
Unit displays or transmits distance that is higher than the actual level / unit is locking on high level

1. Check the mounting conditions within the vessel. Are there any obstacles in front or near the front & side of the face of the transducer? If so, consider moving the unit to a different location.

2. Check the distance of the false echo. If this is above your high level you can change the unit sensitivity to the echo. In 'Advanced' change the ‘Dist Step3’ to a distance further than the echo, and lower the ‘Gain Step3’ to make the unit less sensitive for the ‘Dist Step’ distance.

 If the echo is below the ‘High Level’, you can still modify the Distance & Gain Steps3 to solve the problem. Consider lowering the ‘High Level’ value below the ‘Dist Step3’.

 If you cannot do this, lower the ‘Gain4’ value (also located in ‘Advanced’) incrementally until the unit cannot see the problem echo.

 Lowering the Gain4 % will affect overall sensitivity of the unit. It will reduce unit capability. If you need to lower this value by 5-10% to avoid the unit locking onto an obstacle you must consider step 1 (adjusting mounting location).

3. You can extend the ‘Blanking’ (TX Setup) distance to ‘blank’ the echo entirely. Anything within this ‘Blanking’ distance will NOT be tracked by the unit under any circumstances. Consider this in case of accidental over filling. Never have the ‘Blanking’ distance longer than the ‘High Level’.
Output doesn’t match level during filling / emptying

Ensure the span programmed into your PLC matches the span (high & low level) programmed into the unit.
Ensure the Fill Rate and/or Empty rate is set fast enough for your application.
If the unit is 'locked' showing a higher level than see 'Unit displays or transmits distance that is higher than the actual level'.
Ensure resistance load is within HAWK specification on analog wires.

Output is erratic / inconsistent

Increase the ‘damping’ values to stabilise unit response times. The settings are in ‘Output Adjustment’ menu as ‘FillDamp’ and ‘EmtyDamp’.

If material being measured forms angle of repose try adjusting Transducer mounting angle to get better reflections.

For analogue output related problems it is important to isolate the Sultan (disconnect from the network) and use a multimeter to read the analogue terminals directly.

Replacing a Transducer or Amplifier

If replacing either the amplifier or transducer you must re-enter your application settings into the unit.
Consider stocking spare amplifiers and transducers to avoid potential down time.
Remote & Integral

Sultan 234

Specified ranges (supply dependent): 90-260VAC, 12-30VDC, 36-60VDC). For suspected power issues ensure user supply is appropriate & consistent.

If using AC power you can check the power supply for faults by reading the DC +/- terminals with a multimeter set to DC. This terminal will produce 15-16VDC stable. If this value is lower or inconsistent you may a problem with the internal power supply.

Unit performance will be affected if the unit detects voltage below 9VDC. If ‘V in chk’ is on the unit will trigger its failsafe routine. If V in chk is off the unit will display V fail on the LCD.

Sultan 2

Specified ranges: 12-30VDC.

Unit performance will be affected if power drops below 7VDC. If ‘V in chk’ is on the unit will trigger its failsafe routine. If V in chk is off the unit will display V fail on the LCD.

Transducers

The Transducer power (red wire) should draw 8-10VDC. If this figure is too high or too low check Sultan power & supplied power as above.

Check Resistances between transducer wires (approximate values):

- Black - Blue = 15.6Kohms
- Black - White = 15.6Kohms

Resistances between transducer terminals (approximate values):

- Black - Blue = 16.2Kohms
- Black - White = 16.2Kohms
Error Codes 01 - 04

Error 01: Amplifier/Transmitter can not communicate with transducer.

Wiring:
Check the terminals for a loose or incorrect connection (including junction box/cable extensions). Check the cables for any signs of damage. Ensure any customer supplied cable meets HAWK specifications.

If using junction box extension trace the 8-9VDC from the red/black amplifier terminals to the transducer to ensure wires are correct. If using a junction box ensure you follow Hawk specification for extending cable.

When the unit powers up does the transducer pulse once? If it does this indicates the transducer has powered correctly (red/black terminals). Check the comms wiring (blue/white). If the transducer does not pulse once when the red/black wires are applied (wires must be the potted Transducer wires) the Transducer most likely has a fault or damage.

Has the transducer ID number been modified while connected to a different transmitter? Re-connect the unit to the previous transmitter and change the ID via Quickstart/SenAdd CAL TxAdds.

Error 02:
Communication data corruption between Transmitter and Transducer.

It can be a result of noise in data lines or one of data lines (white or blue) being open circuit.

Make sure wiring is correct especially look to the screen (earth).

Ensure you are using quality shielded instrument cable.

If using a junction box ensure you follow HAWK specification for extending cable.

Integral units with Error 02 will be an internal problem, contact your Hawk representative.

Error 03
Specific comms mode is selected (eg Profibus, FF) but comms module is not connected or responding. Check your unit part number to ensure it has correct comms. If you do not have additional comms (option X) then select Modbus.

Error 04
Amplifier is programmed with incorrect software. Contact your local support.

In general Error Code 01 indicates there is NO communication and Error Code 02 says there IS communication, but not of sufficient quality to be read reliably.
Before contacting Hawk for assistance please write down the ‘Diagnostics’ displayed on the unit to assist with support speed. See ‘DIAGNOSTICS & SOFTWARE OVERVIEW’ for further information.

Also include a diagram or drawing of the vessel marked with where the transducer is installed along with photographs of the installation and what is below the transducer.
Sultan Remote Transmitter

Model
- AWR2 Remote 2 Wire, No relays, 12-30VDC only, Modbus
- AWR234 Remote 2 / 3 / 4 Wire, 5 relays, Modbus

Housing
- S Polycarbonate

Power Supply
- B 12-30VDC
- C¹ 36-60VDC
- U¹ 12-30VDC and 90-260VAC

Additional Communications (PC comms GosHawk standard)
- S¹ No additional communications (5 Relays, Modbus)
- X 4-20mA analogue
- H² 4-20mA analogue with HART 2 wire
- I¹ 4-20mA analogue with HART Isolated 4 wire
- A Profibus PA
- P¹ Profibus DP
- F Foundation Fieldbus
- D¹ DeviceNet
- E¹ 4-20mA with Modbus over Ethernet TCP/IP

This option is no longer available
- X Option no longer available

Approval Standard
- X Not Required
- i0³ IECEx Zone 0 Ex ia IIA T4 IP67 Tamb -20°C to 70°C
- A0³ ATEX Grp II Cat 1 GD IP67 EEx ia IIA T4
- i20³ IECEx Zone 20 DIP A20 TA85C IP68 Tamb -20°C to 75°C
- A20³ ATEX Grp II Cat 1 D T85°C IP67 Tamb -20°C to 75°C
- A22 ATEX Grp II Cat 3 GD T85°C IP67 Tamb -40°C to 70°C
- GP⁴ CSA Equip Class 2; Pollution deg 2; Tamb -20°C to 75°C (Ordinary Locations)
- RN³,⁴ CSA Class I; Div 1/2; Group D; Zone 0; AEx / Ex ia IIA; T4

Position Slave / Crane Master
- X Not Required
- PS¹ Position Slave
- CM¹ Crane Master

AWR234 S U X X X X X

¹Model AWR234 only
²Model AWR2 only
³Model AWR2 only. Communication Option W, X, H only
⁴Power supply option ‘B’ only
Sultan Remote Transducer 3” and 3.5”

<table>
<thead>
<tr>
<th>Model</th>
<th>Transducer Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWRT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transducer Frequency</td>
</tr>
<tr>
<td></td>
<td>30 30kHz for applications up to 15m for 3” (Cone required)</td>
</tr>
<tr>
<td></td>
<td>20 20kHz for applications up to 20m, 3” only (Cone required)</td>
</tr>
<tr>
<td></td>
<td>15 15kHz for applications up to 30m, 3” only (Cone required)</td>
</tr>
<tr>
<td></td>
<td>10 10kHz for applications up to 40m, 3.5” only (Cone required)</td>
</tr>
<tr>
<td></td>
<td>09 9kHz Positioning / Position Slave applications up to 180m (Cone required)</td>
</tr>
<tr>
<td></td>
<td>05 5kHz for applications up to 60m, 3.5” only (Cone required)</td>
</tr>
<tr>
<td></td>
<td>04 4kHz Positioning / Position Slave applications up to 180m (Cone required)</td>
</tr>
</tbody>
</table>

Process Temperature - Facing material selection
- S Polyolefin 80°C (176°F)
- T Teflon 80°C (176°F)
- Y Titanium 80°C (176°F)

Transducer Housing Material
- 4 Polypropylene

Back Cap Mounting Thread Standards
- X Not Required (Standard Flange Mount)
- TB BSP

Back Cap Mounting Thread Sizes
- X Not Required (Standard Flange Mount)
- 30 3” BSP
- 50 3.5” BSP

Approval Standard
- X Not Required
- i0 IECEx Zone 0 Ex ia IIA T4 IP67 Tamb -20°C to 70°C
- A0 ATEX Grp II Cat 1 GD IP67 EEx ia IIA T4
- i1 IECEx Zone 1 Ex mb II IP68 T5(Tamb -20°C to 65°C) T6(Tamb -20°C to 50°C)
- A1 ATEX Grp II Cat 2 GD EEEx m II IP68 T5(Tamb -20°C to 65°C) T6(Tamb -20°C to 50°C)
- i20 IECEx Zone 20 DIP A20 TA85C IP68 Tamb -20°C to 75°C
- A20 ATEX Grp II Cat 1 D T85°C IP67 Tamb -20°C to 75°C
- A22 ATEX Dust (Grp II Cat 3 D T85C IP67)
- GP CSA Equip Class 2; Pollution deg 2; Tamb -20°C to 75°C (Ordinary Locations)
- RN CSA Class I; Div 1/2; Group D; Zone 0; AEx / Ex ia IIA; T4
- KN CSA Class II; Div 2; Group F&G; Class III; T6 T85 for Tamb -20°C to 75°C
- QN CSA Class II; Div 1; Group E, F&G; Ex mb II; T5(T100) for Tamb -20°C to 65°C; T6(T85) for Tamb -20°C to 50°C

Connection
- C IP68 Sealed unit with cable

Cable Length
- 6 6m cable
- 15 15m cable
- 30 30m cable
- 50 50m cable

Mounting Accessories
- X Not Required
- CS End Cap Cable Suspension

Software Options
- X Not Required
- FP Fast Pulsing
- PS Position Slave (Requires Position Slave Amplifier)
Sultan Remote Transducer 2” Version

Model
AWRT Acoustic Wave Remote Transducer

Transducer Frequency
50 50kHz for liquid applications up to 5m (Cone required¹)
40 40kHz for liquid applications up to 7m (Cone required²)
30 30kHz for liquid applications up to 11m (Cone required³)

Process Temperature - Facing material selection
T Tefzel 80°C (176°F)

Transducer Housing Material
6 Tefzel

Thread Standard
TB BSP
TN NPT

Thread Size
20 2” thread

Approval Standard
X Not Required
i0 IECEx Zone 0 Ex ia IIA T4 IP67 Tamb -20°C to 70°C
A0 ATEX Grp II Cat 1 GD IP67 EEx ia IIA T4
i1 IECEx Zone 1 Ex mb II IP68 T5(Tamb -20°C to 65°C) T6(Tamb -20°C to 50°C)
A1 ATEX Grp II Cat 2 GD EEx m II IP68 T5(Tamb -20°C to 65°C) T6(Tamb -20°C to 50°C)
i20 IECEx Zone 20 DIP A20 TA85C IP68 Tamb -20°C to 75°C
A20 ATEX Grp II Cat 1 D T85°C IP67 Tamb -20°C to 75°C
A22 ATEX Grp II Cat 3 GD T85°C IP67 Tamb -40°C to 70°C
GP CSA Equip Class 2; Pollution deg 2; Tamb -20°C to 75°C (Ordinary Locations)
RN CSA Class I; Div 1/2; Group D; Zone 0; AEx/Ex ia IIA; T4
KN CSA Class II; Div 2; Group F&G; Class III; T6 T85 for Tamb -20°C to 65°C
QN CSA Class II; Div 1; Group E, F&G; Ex mb II; T5(T100) for Tamb -20°C to 65°C; T6(T85) for Tamb -20°C to 50°C

Connection
C IP68 Sealed unit with cable

Cable Length
6 6m cable
15 15m cable
30 30m cable
50 50m cable

Mounting Accessories
X Not Required
CS Cable Suspension on end cap

Software Options
X Not Required

¹See ‘Transducer / Cone / Flange combination table

AWRT 30 T 6 TB 20 X C 6 X X
Sultan Integral 3” and 3.5”

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWI2</td>
<td>Integral 2 Wire, No relays, Modbus</td>
</tr>
<tr>
<td>AWI234</td>
<td>Integral 2 / 3 / 4 Wire, 2 relays, Modbus</td>
</tr>
</tbody>
</table>

Housing
- S Valox 357U

Power Supply
- B 12-30VDC
- U¹ 12-30VDC and 90-260VAC

Transducer Frequency
- 30 kHz for applications up to 11m for 2” and 15m for 3” (Cone required⁶)
- 20 kHz for applications up to 20m, available in 3” only (Cone required⁶)
- 15 kHz for applications up to 30m, available in 3” only (Cone required⁶)
- 10 kHz for applications up to 40m, available in 3.5” only (Cone required⁶)
- 09 kHz for Positioning / Position Slave applications up to 180m (Cone required⁶)
- 05 kHz for applications up to 60m, available in 3.5” only (Cone required⁶)
- 04 kHz for Positioning / Position Slave applications up to 180m (Cone required⁶)

Process Temperature - Facing material selection
- S² Polyolefin 80°C (176°F)
- T³ Teflon 80°C (176°F)
- Y⁴ Titanium 80°C (176°F)

Transducer Housing Material
- 4 Polypropylene

Additional Communication
- S¹ No additional communications (5 Relays, Modbus)
- X 4-20mA analogue
- H⁵ 4-20mA analogue with HART 2 wire
- I¹ 4-20mA analogue with HART Isolated 4 wire
- A Profibus PA
- F Foundation Fieldbus

Approval Standard
- X Not Required
- i0⁵ IECEx Zone 0 Ex ia IIA T4 IP67 Tamb -20°C to 70°C
- A0⁶ ATEX Grp II Cat 1 GD IP67 EEx ia IIA T4
- i20⁵ IECEx Zone 20 DIP A20 TA85C IP67 Tamb -20°C to 75°C
- A20⁶ ATEX Grp II Cat 1 D T85°C IP67 Tamb -20°C to 75°C
- A22 ATEX Grp II Cat 3 GD T85°C IP67 Tamb -40°C to 70°C

Software Options
- X Not Required

¹ Model AWI234 only
² Transducer Frequency 04, 05, 09, 10 only
³ Transducer Frequency 10, 15, 20, 30 only
⁴ Transducer Frequency 15 only
⁵ Model AWI2 only. Communication Option W, X, H only
⁶ See Transducer / Cone / Flange combination table
Sultan Integral 2”

Model
- AWI2: Integral 2 Wire, No relays, 12-30VDC only, Modbus
- AWI234: Integral 2 / 3 / 4 Wire, 2 relays, Modbus

Housing
- S: Valox 357U

Power Supply
- B: 12-30VDC
- U: 12-30VDC and 90-260VAC

Transducer Frequency
- 50 kHz for liquid applications up to 5m (Cone required\(^6\))
- 40 kHz for liquid applications up to 7m (Cone required\(^6\))
- 30 kHz for liquid applications up to 11m (Cone required\(^6\))

Process Temperature - Facing material selection
- T: Tefzel 80°C (176°F)

Transducer Housing Material
- 6: Tefzel

Thread Standards
- TB: BSP
- TN: NPT

Mounting Thread Sizes
- 20: 2” thread

Additional Communication
- S: No additional communications (5 Relays, Modbus)
- X: 4-20mA analogue
- H: 4-20mA analogue with HART 2 wire
- ‘I: 4-20mA analogue with HART Isolated 4 wire
- A: Profibus PA
- F: Foundation Fieldbus

Approval Standard
- X: Not Required
- i0: IECEx Zone 0 Ex ia IIA T4 IP67 Tamb -20°C to 70°C
- A0: ATEX Grp II Cat 1 GD IP67 EEx ia IIA T4
- i20: IECEx Zone 20 DIP A20 TA85C IP68 Tamb -20°C to 75°C
- A20: ATEX Grp II Cat 1 D T85°C IP67 Tamb -20°C to 75°C
- A22: ATEX Grp II Cat 3 GD T85°C IP67 Tamb -40°C to 70°C

Software Options
- X: Not Required

\(^1\) Model AWI234 only
\(^2\) Model AWI2 only
\(^3\) Model AWI2 only. Communication Option W, X, H only
\(^6\) See Transducer / Cone / Flange combination table
Flange Selection

<table>
<thead>
<tr>
<th>Flange</th>
<th>Dimension Standard</th>
<th>Flange Sizes</th>
<th>Flange Mounting Position</th>
<th>Flange Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A ANSI²</td>
<td>2N</td>
<td>A Cone Mounted (standard)</td>
<td>Polypropylene</td>
</tr>
<tr>
<td></td>
<td>D DN²</td>
<td>2B</td>
<td>C Angled flange piece only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J JIS²</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cone Selection

<table>
<thead>
<tr>
<th>Cone</th>
<th>Focaliser Cone</th>
</tr>
</thead>
</table>

1. **Cone Type**
 - 02N: C04 cone for 2" NPT transducer
 - 02B: C04 cone for 2" BSP transducer
 - 04: 4" cone for 20kHz and 3" 30kHz transducers
 - 08-15: 8" cone for 15kHz
 - 08-10: 8" cone for 10kHz
 - 10-15: 10" cone for 15kHz
 - 10-10: 10" cone for 10kHz and 9Hz
 - 10-05: 10" cone for 5kHz and 4kHz

2. **Cone Material**
 - 4: Polypropylene
 - 7A: Carbon Fibre. Includes matching ANSI Flange (4", 8" or 10")
 - 7D: Carbon Fibre. Includes matching DN Flange (4", 8" or 10")
 - 7J: Carbon Fibre. Includes matching JIS Flange (4", 8" or 10")
 - 8: Polyurethane

Additional Flange Options

- FA8A-4-C4: 8" ANSI, polypropylene
- FA10A-4-C4: 10" ANSI, polypropylene
- FA6D50-4: 6" ANSI, polypropylene
- FA8D50-4: 6" ANSI, polypropylene
- FA10D50-4: 6" ANSI, polypropylene

Additional Cone Options

- C04-4-ZOD90: C04-4 trimmed to fit 90mm ID nozzle.
- C03-4-Z: Cone and coupling to fit 72mm ID nozzle for 20kHz and 30kHz (T4).

1. Important: See Transducer / Cone / Flange combination table for valid part combinations
2. See ‘Flange Dimension Standards’ table for full Flange specification
Transducer / Cone / Flange Combination Table

* Each line represents fitting combinations. Flange Dimension Standard A, D or J replaces underscore (_) position

<table>
<thead>
<tr>
<th>Transducer</th>
<th>Cone</th>
<th>Flange Option 1</th>
<th>Flange Option 2</th>
<th>Flange Option 3</th>
<th>Flange Option 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 / 40kHz</td>
<td>C02</td>
<td>F_3A</td>
<td>F_4A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30kHz (T6)</td>
<td>C02</td>
<td>F_3A</td>
<td>F_4A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30kHz (T4)</td>
<td>C03-4-Z</td>
<td>F_3A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C04</td>
<td>F_3A</td>
<td>F_4A</td>
<td>F_6A</td>
<td>F_8A-4-C4</td>
</tr>
<tr>
<td>Back Cap Mount (TB30)</td>
<td>F_4A</td>
<td>F_4A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20kHz</td>
<td>C03-4-Z</td>
<td>F_3A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C04</td>
<td>F_3A</td>
<td>F_4A</td>
<td>F_6A</td>
<td>F_8A-4-C4</td>
</tr>
<tr>
<td>Back Cap Mount (TB30)</td>
<td>F_4A</td>
<td>F_6A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15kHz</td>
<td>C04</td>
<td>F_4A</td>
<td>F_6A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C08</td>
<td>F_8A</td>
<td>F_10A</td>
<td>F_6D50-4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C10</td>
<td>F_8A</td>
<td>F_10A</td>
<td>F_6D50-4</td>
<td></td>
</tr>
<tr>
<td>Back Cap Mount (TB30)</td>
<td>F_4A</td>
<td>F_6A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 / 10kHz</td>
<td>C08</td>
<td>F_8A</td>
<td>F_10A</td>
<td>F_6D50-4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C10</td>
<td>F_8A</td>
<td>F_10A</td>
<td>F_6D50-4</td>
<td></td>
</tr>
<tr>
<td>Back Cap Mount (TB50)</td>
<td>F_6D50-4</td>
<td>F_8D50-4</td>
<td>F_10D50-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 / 5kHz</td>
<td>C08</td>
<td>F_8A</td>
<td>F_10A</td>
<td>F_6D50-4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C10</td>
<td>F_8A</td>
<td>F_10A</td>
<td>F_6D50-4</td>
<td></td>
</tr>
<tr>
<td>Back Cap Mount (TB50)</td>
<td>F_6D50-4</td>
<td>F_8D50-4</td>
<td>F_10D50-4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Accessories

HAWKLink Data Modem

- **Model**
 - HLR Remote stand alone HAWKLink system
 - **Power Supply**
 - B 12-30VDC
 - U 12-30VDC and 90-260VAC
 - **Network Type**
 - G3 3G Autoband
 - **Sim Card**
 - S3 Australian Sim Card expires after 3 month
 - S12 Australian Sim Card expires after 12 month
 - X Not Required

- **HAWKLink USB**
 - Stainless Steel Sunhood
 - SUNHOOD
 - Junction Box for twin Transducer applications
 - AWRT-JB-01
 - AWRT-JB-06 (includes 6m cable)
 - **Extra Cable** (Belden 3084A)
 - CA-TXCC-R-C15 15m cable
 - CA-TXCC-R-C30 30m cable
 - CA-TXCC-R-C50 50m cable
 - CA-TXCC-R-C100 100m cable

- **HLR**
 - **U** G3 S3

Not Recommended
Specifications

Sultan Acoustic Wave Series

Frequencies
- 4kHz, 5kHz, 9kHz, 10kHz, 15kHz, 20kHz, 30kHz, 40kHz, 50kHz

Operating Voltage
- 12-30VDC (residual ripple no greater than 100mV)
- 90-265VAC 50/60Hz
- 36-60VDC

Power Consumption
- <10VA @ 240VAC
- <3W @ 24VDC
- <6W @ 48VDC

Analog Output
- 4-20mA (750 ohms @ 24Vdc User supply, 250 ohms internally driven)

Communications
- GosHawk, HART, Modbus, Modbus over Ethernet TCP/IP, Profibus DP, DeviceNet, Foundation Fieldbus, Profibus PA. Multidrop mode can address 1-250 units over 4 wire

Relay Output
- (2) Integral (5) Remote
 - Form ‘C’ (SPDT) contacts, rated 0.5A at 240VAC non-inductive.
 - All relays have independently adjustable dead bands.
 - Remote fail-safe test facility for one relay.

Blanking Distance
- See ‘Minimum Measurement Range’ section

Maximum Range
- 5m (16ft) 50kHz liquids
- 7m (22ft) 40kHz liquids
- 10m (33ft) 30kHz liquids, 5m (16ft) solids
- 20m (65ft) 20kHz liquids/slurries, 10m (33ft) solids
- 30m (98ft) 15kHz liquids/slurries, 20m (65ft) solids
- 60m (196ft) 10kHz liquids/slurries 40m (165ft) / powders/solids
- 60m (196ft) 5kHz liquids/slurries/powders/solids
- 180m (588ft) 4/9 kHz for extended range position applications

Resolution
- 1 mm (0.04”) 50, 40, 30,20, 15, 10, 5kHz
- 4 mm (0.2”) 9, 4kHz

Sensor Accuracy
- +/- 0.25% of measured range

Operating Temperature
- Integral System -40°C (-40°F) to 80°C (176°F)
- Remote electronics -40°C (-40°F) to 80°C (176°F)
- Remote transducer -40°C (-40°F) to 80°C (176°F)

Transducer / Amplifier Separation
- Up to 1000m using specified extension cable

Cable
- 4 conductor shielded twisted pair instrument cable.
- Conductor size dependent on cable length.
- BELDEN 3084A, DEKORON or equivalent.
- Max: BELDEN 3084A = 500m (1640 ft)
- Max: DEKORON IED183AA002 = 350m (980 ft)

Maximum Operating Pressure
- +/- 7.5 PSI (+/- 0.5 Bar)
Specifications / Approvals & Certification

Sultan Acoustic Wave Series

Beam Angle

- 7.5° without focaliser 50kHz/40kHz / 30kHz
- 4° with focaliser 50kHz/40kHz
- 6° with focaliser 30kHz/20kHz / 15kHz/10kHz/5kHz
- 10° with focaliser 9kHz/4kHz

Display

- 2 line x 12 digit alphanumeric LCD

Memory

- Non-Volatile (No backup battery required)
- >10 years data retention

Enclosure Sealing

- Integral System IP67
- Remote Electronics IP65 (NEMA 4x)
- Remote Transducer IP68

Cable Entries

- Integral: 3 x M16 Glands
- Remote: 3 x 20mm, 1 x 16mm knock outs.

Mounting

- ANSI, JIS or DIN Flange
- 4 in/100mm to 10 in/250mm
- 2in BSP Thread / NPT Thread

Typical Weight

<table>
<thead>
<tr>
<th>Weight</th>
<th>kg</th>
<th>lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote Amplifier with 6m cable</td>
<td>1</td>
<td>2.2</td>
</tr>
<tr>
<td>Remote Amplifier with 15m cable</td>
<td>3</td>
<td>6.6</td>
</tr>
<tr>
<td>Remote Amplifier with 30m cable</td>
<td>6</td>
<td>13.2</td>
</tr>
<tr>
<td>Remote Amplifier with 50m cable</td>
<td>10</td>
<td>22.0</td>
</tr>
</tbody>
</table>

Approvals & Certification

For queries about certification please contact techsupport@hawk.com.au

See www.hawkmeasure.com for full safety instructions and installation requirements in hazardous environments.

- IECEx Zone 0 Ex ia IIA T4 IP67 Tamb -20°C to 70°C
- ATEX Grp II Cat 1 GD IP67 Ex ia IIA T4
- IECEx Zone 1 Ex mb II IP68 T5(Tamb -20°C to 65°C) T6(Tamb -20°C to 50°C)
- ATEX Grp II Cat 2 GD Ex m II IP68 T5(Tamb -20°C to 65°C) T6(Tamb -20°C to 50°C)
- IECEx Zone 20 DIP A20 TA85C IP68 Tamb -20°C to 75°C
- ATEX Grp II Cat 1 D T85°C IP67 Tamb -20°C to 75°C
- ATEX Grp II Cat 3 GD T85°C IP67 Tamb -20°C to 70°C
- CSA Equip Class 2; Pollution deg 2; Tamb -20°C to 75°C (Ordinary Locations)
- CSA Class I; Div 1/2; Group D; Zone 0; AEx/Ex ia IIA; T4
- CSA Class II; Div 2; Group F&G; Class III; T6 T85 for Tamb -20°C to 75°C
- CSA Class II; Div 1; Group E, F&G; Ex mb II; T5(T100) for Tamb -20°C to 65°C; T6(T85) for Tamb -20°C to 50°C